Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

基于预测-决策框架的综合能源系统优化

来源:电工电气发布时间:2025-01-23 15:23浏览次数:0

基于预测-决策框架的综合能源系统优化

崔国伟
(国网徐州市铜山区供电公司,江苏 徐州 221000)
 
    摘 要:随着可再生能源渗透率的不断提高,大量的不确定性设备给综合能源系统(IES)的安全高效运行带来了威胁。一般解决不确定型优化问题的过程是,依靠大量历史数据并辅助一些人工智能技术进行可再生能源的预测分析,但通常预测和决策分开进行的过程会由于预测误差过大而导致模型的优化目标产生严重恶化。提出了基于K-最近邻(KNN)算法和鲁棒优化(RO)相结合的预测- 决策方法改进 IES 的不确定型优化问题。通过 KNN+ 最小体积(KMV)椭球集的方法构建 KMV 椭球集,求解在该集合下的两阶段鲁棒模型,得到最优的多能流解。其中,为了平衡 IES 的鲁棒性和经济性,采用鲁棒可调参数表示不确定集的合适水平。通过仿真算例分析,证明了 KMV 椭球集的区间大小与可调参数的变化规律,以及该集合的优越性。
    关键词: 综合能源系统;机器学习;鲁棒优化;不确定型优化
    中图分类号:TM73     文献标识码:A     文章编号:1007-3175(2025)01-0026-10
 
The Optimization of Integrated Energy Systems Based on
Predictive & Prescriptive Framework
 
CUI Guo-wei
(State Grid Xuzhou Tongshan District Power Supply Company, Xuzhou 221000, China)
 
    Abstract: With the increasing permeability of renewable energy, a large number of uncertain devices pose a threat to the safe and efficient operation of the integrated energy system (IES). In general, solving the uncertainty optimization problem relies on a large amount of historical data, and assists some artificial intelligence technology to predict the analysis of renewable energy, but the usual process of separate prediction and decision making can produce serious deterioration of the model's optimization objective due to excessive prediction errors. Therefore, this paper proposes a prediction-decision method based on K-nearest neighbor (KNN) and robust optimization(RO) to improve the uncertainty optimization problem of IES. Then, the KMV ellipsoid set is constructed using the KNN + minimum volume (KMV) ellipsoid set method, and the two-stage robust model under the set is solved to obtain the optimal multi-energy flow solution. In order to balance the robustness and economy of IES, robust adjustable parameters are used to represent the appropriate level of the uncertainty set. Finally, through the simulation example,the change rule of the interval size and the adjustable parameters of the KMV ellipsoid set is proved, and the superiority of the set is proved.
    Key words: integrated energy system; machine learning; robust optimization; uncertain optimization
 
参考文献
[1] 张苏涵,顾伟,俞睿智,等. 综合能源系统建模与仿真:综述、思考与展望[J] . 电力系统自动化,2024,48(17) :1-21.
[2] 卓振宇,张宁,谢小荣,等. 高比例可再生能源电力系统关键技术及发展挑战[J] . 电力系统自动化,2021,45(9) :171-191.
[3] 张金良,刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制,2022,50(22) :49-58.
[4] 盛四清,张立. 考虑风光荷预测误差的电力系统经济优化调度[J] . 电力系统及其自动化学报,2017,29(9) :80-85.
[5] BEN-TAL A, GHAOUI L E, NEMIROVSKI A.Robust Optimization(Princeton Series in Applied Mathematics)[M].Princeton :Princeton University Press,2009.
[6] DRAGOON K, MILLIGAN M.Assessing wind integration costs with dispatch models: A case study of PacifiCorp[C]//American Wing Energy Association Conference,2003.
[7] SEOKHO S, SI-DOEK O, HO-YOUNG K.Wind turbine power curve modeling using maximum likelihood estimation method[J].Renewable Energy,2019,136(6) :1164-1169.
[8] HUA W, JIANG J, Sun H, et al.Data-driven prosumer-centric energy scheduling using convolutional neural networks[J].Applied Energy,2022,308(15) :118361.
[9] 彭虹桥,顾洁,宋柄兵,等. 基于多维变量筛选- 非参数组合回归的长期负荷概率预测模型[J] . 电网技术,2018,42(6) :1768-1775.
[10] MORADZADEH A, MOHAMMADI-IVATLOO B, ABAPOUR M,et al.Heating and Cooling Loads Forecasting for Residential Buildings Based on Hybrid Machine Learning Applications: A Comprehensive Review and Comparative Analysis[J].IEEE Access,2022(10) :2196-2215.
[11] TAN Z, DE G, LI M, et al.Combined electricityheat-cooling-gas load forecasting model for integrated energy system based on multitask learning and least square support vector machine[J].Journal of Cleaner Production,2019,248(14) :119252.
[12] LI T, SUN H, SHI Z, et al.Cooperative optimal configuration of integrated energy system considering uncertainty factors of sourceload[J].IOP Conference Series: Earth and Environmental Science,2022,983(1) :012119.
[13] ALTMAN N S.An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[J].The American Statistician,1992,46(3) :175-185.
[14] WANG J, XU X, LI H, et al.Two-stage robust optimization of thermal-ESS units scheduling under wind uncertainty[J].Energy Reports,2022,8:1147-1155.
[15] LI S, HAN W, LIU L.Robust Optimization of the Hub Location Problem for Fresh Agricultural Products with Uncertain Demand[J].IEEE Access,2022(10) :41902-41913.
[16] TAN B F, CHEN H Y, ZHENG X D, et al.Two-stage robus toptimization dispatch for multiple microgrids with electric vehicle loads based on a novel datadriven uncertainty set[J].International Journal of Electrical Power & Energy Systems,2022,134 :107359.
[17] JIN X, WU Q, JIA H, et al.Optimal Integration of Building Heating Loads in Integrated Heating/Electricity Community Energy Systems :A Bi-Level MPC Approach[J].IEEE Transactions onSustainable Energy,2021,12(3) :1741-1754.
[18] JIANG S L, PENG G, BOGLE I D L, et al.A twostage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants[J].Applied Energy,2022,306 :118022.
[19] VATANI B, CHOWDHURY B, DEHGHAN S, et al.A critical review of robust self-scheduling for generation companies under electricity price uncertainty[J].International Journal of Electrical Power & Energy Systems,2018,97 :428-439.
[20] WU W, WANG K, LI G, et al.Modeling Ellipsoidal Uncertainty Set Considering Conditional Correlation of Wind Power Generation[J].Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering,2017,37(9) :2500-2507.
[21] QIU Z , JIANG N . An ellipsoidal Newton’s iteration method of nonlinear structural systems with uncertain-but-bounded parameters[J].Computer Methods in Applied Mechanics and Engineering,2021,373(1) :113501.
[22] KURYATNIKOVA O , GHADDAR B , MOLZAHN D K .Adjustable Robust Two-Stage Polynomial Optimization with Application to AC Optimal Power Flow [EB/OL] . (2021-04-07) [2024-07-15] .https://doi.org/10.48550/arXiv.2014.03107arXiv preprint.
[23] 刘一欣,郭力,王成山. 微电网两阶段鲁棒优化经济调度方法[J] . 中国电机工程学报,2018,38(14) :4013-4022.
[24] LI D, ZHANG S.Optimal Design of Distributed Energy Resource Systems under Uncertainties Based on Two-Stage Robust Optimization[J].Journal of Thermal Science,2021,30(1) : 51-63.
[25] OHMORI S.A Predictive Prescription Using Minimum Volume k-Nearest Neighbor Enclosing Ellipsoid and Robust Optimization[J].Mathematics,2021,9(2) :119.
[26] JI Y, XU Q, ZHAO J, et al.Day-ahead and intraday optimization for energy and reserve scheduling under wind uncertainty and generation outages[J].Electric Power Systems Research,2021, 195 :107133.
[27] KOCUK B , DEY S S , SUN X A , Strong SOCP Relaxations for the Optimal Power Flow Problem[J].Operations Research,2016,64(6) :1177-1196.
[28] LIU X, WU J, JENKINS N, et al.Combined analysis of electricity and heat networks[J].Applied Energy,2016,162 :1238-1250.
[29] ZENG B , ZHAO L . Solving two-stage robust optimization problems using a column-andconstraint generation method[J].Operations Research Letters,2013,41(5) :457-461.
[30] 朱嘉远,刘洋,许立雄,等. 考虑风电消纳的热电联供型微网日前鲁棒经济调度[J] . 电力系统自动化,2019,43(4) :40-48.
[31] ZHENG L, LI Y, WEI C, et al.A data-driven method for operation pattern analysis of the integrated energy microgrid[J].Energy Conversion and Management: X,2021,11 :100092.
[32] 李斯,周任军,童小娇,等. 基于盒式集合鲁棒优化的风电并网最大装机容量[J] . 电网技术,2011,35(12) :208-213.
[33] VENZKE A, HALILBASIC L, MARKOVIC U, et al.Convex relaxations of chance constrained AC optimal power flow[J].IEEE Transactions on Power Systems,2018,33(3) :2829-2841.
[34] WANG Shuai, LI Bin, LI Guanzheng, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration[J].Applied Energy,2021,292 :116851.