龙门加工中心综合误差建模与实时补偿
廖嘉琦1,倪俊芳1,宋世通2
(1 苏州大学 机电工程学院,江苏 苏州 215137;
2 纽威数控装备(苏州)有限公司,江苏 苏州 215004)
摘 要:加工中心的热变形误差是衡量其加工精度的关键指标之一。为有效降低热变形对机床加工精度的影响,基于热误差敏感度理论,优化了误差采样的温度测点布置,并结合综合误差建模理论,利用 MATLAB 软件构建了加工中心的综合误差模型。通过机床外部 I/O 面板、传感器和数控系统,搭建了误差实时补偿系统,并对龙门加工中心进行了实时补偿分析。实验结果表明,在常温条件下,最大定位误差从 162.6μm 降至 46.3μm,降幅达 72% ;在热平衡状态下,最大定位误差从 71.7μm 降至 23.6μm,降幅达 67%。该方法通过实时补偿机床误差,显著提升了加工精度。
关键词: 综合误差建模;误差实时补偿;数控系统;龙门加工中心
中图分类号:TG659 文献标识码:B 文章编号:1007-3175(2025)03-0060-04
Comprehensive Error Modeling and Real-Time Compensation of
Gantry Machining Centers
LIAO Jia-qi1, NI Jun-fang1, SONG Shi-tong2
(1 School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China;
2 Neway CNC Equipment (Suzhou) Co., Ltd, Suzhou 215004, China)
Abstract: The thermal deformation error of machining centers is one of the key indicators for measuring its machining accuracy. In order to effectively reduce the impact of thermal deformation on the precision of machine tools, based on thermal error sensitivity theor, this study optimizes the temperature measurement point layout for error sampling, combines a comprehensive error model, and uses MATLAB software to construct the synthetic error model of machining center. Through the external I/O panel, sensor and CNC system, a real-time error compensation system is established and the real-time compensation analysis of gantry machining center is carried out. Experimental results show that under normal temperature conditions, the maximum positioning error is reduced from 162.6 μm to 46.3 μm, a reduction of 72%;under thermal equilibrium conditions, the maximum positioning error is reduced from 71.7 μm to 23.6 μm, a reduction of 67%. This method significantly improves machining accuracy by real-time compensation of machine tool errors.
Key words: comprehensive error modeling; real-time error compensation; CNC system; gantry machining center
参考文献
[1] LI R , ZHAO L , ZHOU B , et al . Research on Machining Error Control Method Driven by Digital-Twin Model of Dynamic Characteristics of Machining System[J].Integrated Ferroelectrics,2023,237(1) :321-335.
[2] 王梦磊,牛兴华,朱传达,等. 基于球头刀铣削的三轴数控机床几何与切削力综合误差补偿研究[J]. 制造技术与机床,2024(7) :71-79.
[3] 邱立伟. 多轴数控机床综合误差建模与补偿的研究[D].长春:长春工业大学,2011.
[4] BOHEZ E L J.Compensating for Systematic Errors in 5-axis NC Machining[J].Computer-Aided Design,2002,34(5) :391-403.
[5] 王维,杨建国,姚晓栋,等. 数控机床几何误差与热误差综合建模及其实时补偿[J] . 机械工程学报,2012,48(7) :165-170.
[6] 杨少兵,陈忠维. 数控机床进给轴位置精度的测量与优化[J]. 机电技术,2020(4) :40-43.