Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

同步发电机转子绕组匝间短路故障智能检测

来源:电工电气发布时间:2025-04-03 09:03浏览次数:7

同步发电机转子绕组匝间短路故障智能检测

薛彪,袁斌华
(陇东学院 新能源学院,甘肃 庆阳 745000)
 
    摘 要:传统固定频率范围检测方法因频带划分冗余,难以有效捕捉故障特征,进而削弱了检测的灵敏度、速度和定位精度。提出一种基于小波包熵的同步发电机转子绕组匝间短路故障智能检测方法,采用小波包分解技术,将匝间短路信号分解至不同频带,并通过形态学滤波有效降噪,提升信号质量。引入熵值理论,通过计算各频带信号的样本熵、多尺度熵及小波包能量谱相对熵,筛选出熵值变化显著的频带,有效剔除冗余频带,精确提取出故障特征,显著增强检测的灵敏度。结合卷积神经网络对提取的特征进行分类,实现故障的智能检测。实验验证显示,该方法相较于传统方法,在提升故障检测灵敏度、加速检测流程及确保故障精准定位方面展现出显著优势,为同步发电机转子绕组故障诊断提供了一种高效、可靠的解决方案,有效克服了传统方法的局限性。
    关键词: 小波包分解;熵值计算;同步发电机;匝间短路;故障检测
    中图分类号:TM341 ;TM713     文献标识码:B     文章编号:1007-3175(2025)03-0053-07
 
Intelligent Detection of Interturn Short Circuit Fault in
Synchronous Generator Rotor Winding
 
XUE Biao, YUAN Bin-hua
(College of New Energy, Longdong University, Qingyang 745000, China)
 
    Abstract: The traditional fixed frequency range detection method is difficult to effectively capture fault characteristics due to redundant frequency band division, which weakens the sensitivity, speed, and positioning accuracy of detection. In response to the above issues, this study proposes an intelligent detection method for interturn short circuit faults in synchronous generator rotor windings based on wavelet packet entropy.Firstly, wavelet packet decomposition technology is used to decompose the interturn short circuit signal into different frequency bands,and morphological filtering is used to effectively reduce noise and improve signal quality. Then, the entropy theory is introduced to calculate the sample entropy, multiscale entropy, and wavelet packet energy spectrum relative entropy of each frequency band signal, screen out the frequency bands with significant entropy changes, effectively eliminate redundant frequency bands, accurately extract fault features, and significantly enhance the sensitivity of detection. Combining convolutional neural networks to classify extracted features and achieve intelligent fault detection.Experimental verification shows that compared to traditional methods, this method exhibits significant advantages in improving fault detection sensitivity, accelerating detection processes, and ensuring accurate fault localization. It provides an efficient and reliable solution for synchronous generator rotor winding fault diagnosis, effectively overcoming the limitations of traditional methods.
    Key words: wavelet packet decomposition; entropy calculation; synchronous generator; interturn short circuit; fault detection
 
参考文献
[1] 黄杨森. 基于 MSET 的汽轮发电机转子绕组匝间短路故障诊断[J]. 发电设备,2024,38(3) :182-188.
[2] 孙浩, 刘驰程, 傅裕, 等. 基于行波理论的检测技术在转子绕组故障诊断中的应用[J] . 电工技术,2022(9) :43-45.
[3] 谭尚仁,杨增杰,高境,等. 重复脉冲法在凸极转子绕组匝间短路检测中的应用探索[J] . 水力发电,2024,50(6) :72-78.
[4] 付强. 基于 XALO-SVM 的同步电机转子绕组匝间短路故障诊断方法[J] . 黑龙江科技大学学报,2024,34(1) :125-131.
[5] 徐俊元,胡磊,王晓剑,等. 基于 PCC-SVM 的发电机转子匝间短路在线监测法[J]. 大电机技术,2023(6):35-41.
[6] 冯宇哲,李卫军,杨立川.660 MW 发电机转子绕组匝间短路故障检测与处理[J]. 电工电气,2023(7) :46-50.
[7] 潘剑南,李浩良. 一起基于重复脉冲法的发电机转子绕组匝间短路故障分析[J] . 黑龙江电力,2022,44(5) :402-406.
[8] 王云峰,冀顺林. 一起发电机转子绕组动态匝间短路故障的诊断与分析[J]. 电工技术,2021(17) :170-172.
[9] 邓方雄,杨东,刘敏,等. 大型水轮发电机转子匝间短路在线监测研究[J] . 设备管理与维修,2021(11) :27-28.
[10] 李俊卿,李斯璇,陈雅婷,等. 一种基于 CGAN-CNN 的同步电机转子绕组匝间短路故障诊断方法[J]. 电力自动化设备,2021,41(8) :169-174.