Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

SSA-VMD联合改进小波阈值去噪算法在局部放电中应用

来源:电工电气发布时间:2025-04-03 12:03浏览次数:6

SSA-VMD联合改进小波阈值去噪算法在局部放电中应用

孟小斐,刘红兵
(太原科技大学 电子信息工程学院,山西 太原 030024)
 
    摘 要:针对电力设备局部放电信号的噪声干扰问题,提出了一种麻雀搜索算法(SSA)、变分模态分解(VMD)与改进小波阈值去噪法相结合的去噪算法。以排列熵作为适应度函数,使用麻雀搜索算法确定变分模态分解的模态数和惩罚因子并将含噪局放信号拆分成多个固有模态分量,再根据样本熵确定有效阈值和去噪阈值。将样本熵大于有效阈值的模态分量视为噪声分量剔除,将样本熵小于有效阈值且大于去噪阈值的模态分量进行改进小波阈值法处理,将去噪后的模态分量和小于去噪阈值的模态重构完成信号去噪。在 MATLAB 软件中进行对比仿真实验,该算法在信噪比 xSNR 和均方根误差 xRMSE 方面均有提升且保留了原始信号中的有效信息,验证了其有效性。
    关键词: 信号去噪;变分模态分解;麻雀搜索算法;局部放电;改进小波阈值法
    中图分类号:TM744     文献标识码:A     文章编号:1007-3175(2025)03-0029-06
 
Application of SSA-VMD Combined Improved Wavelet Threshold
Denoising Algorithm in Partial Discharge
 
MENG Xiao-fei, LIU Hong-bing
(School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)
 
    Abstract: To solve the noise interference problem of partial discharge signal of power equipment, an algorithm combining sparrow search algorithm (SSA), variational mode decomposition (VMD) and improved wavelet threshold denoising method is proposed. Firstly, with permutation entropy as fitness function, the sparrow search algorithm is used to determine the mode number and penalty factor of variational mode decomposition, and the signal with noise is divided into multiple inherent modal components. Consider modal components having a sample entropy higher than the effective threshold as noise components and eliminate them. For modal components where the sample entropy is lower than the effective threshold yet higher than the denoising threshold, carry out the treatment with the improved wavelet threshold approach. Subsequently,reconstruct the modal components that have been denoised and those with sample entropy below the denoising threshold, thus achieving signal denoising. In the MATLAB based comparative simulation experiments, the algorithm proposed in this paper demonstrates improvements in both the signal - to - noise ratio xSNR and root - mean - square error xRMSE. Moreover, it effectively preserves the valid information within the original signal, thus verifying its effectiveness.
    Key words: signal denoising; variational mode decomposition; sparrow search algorithm; partial discharge; improved wavelet threshold method
 
参考文献
[1] 张镇涛,刘明萍,余勃文,等. 改进小波阈值新算法在电网扰动中的去噪研究[J] . 现代电子技术,2021,44(9) :53-57.
[2] 刘畅. 电力信号去噪与微弱信号检测的研究[D]. 武汉:华中科技大学,2019.
[3] ZHONG Liangliang, WANG Hanfeng, XU Wei, et al.The application of power quality signal denoising based on the improved wavelet threshold function[J].IOP Conference Series :Materials Science and Engineering,2020,768(6) :062021.
[4] 赵坤,郑小霞. 基于改进 EMD 和小波阈值法的风机数据降噪研究[J] . 上海电力大学学报,2020,36(2) :136-140.
[5] 张明龙,张振宇,高源,等. 基于变分模态分解的暂态扰动波形去噪算法[J] . 电力系统保护与控制,2022,50(8) :43-49.
[6] YUAN C, DING X, CHENG H, et al.Research on Denoising of GIS Ultra-High Frequency Partial Discharge Signal Based on VMD Combined with SG Filter[C]//Journal of Physics :ConferenceSeries,2023.
[7] WANG F, GAO G.Optimization of Short-Term Wind Power Prediction of Multi-Kernel Extreme Learning Machine Based on Sparrow Search Algorithm[C]//Journal of Physics :Conference Series,2023,2527(1) :012075.
[8] 胡锐,乔加飞,李永华,等. 基于 WOA-VMD-SSA-LSTM 的中长期风电预测[J] . 太阳能学报,2024,45(9) :549-556.
[9] 刘冲, 马立修, 潘金凤, 等. 联合 VMD 与改进小波阈值的局放信号去噪[J] . 现代电子技术,2021,44(21) :45-50.
[10] 顾云青,苏玉香,沈晓群,等. 基于改进的 CEEMDAN 排列熵和 GWO-SVM 的滚动轴承故障诊断[J]. 组合机床与自动化加工技术,2022(8) :62-66.
[11] 袁耀,黄克捷,陈建兴,等. 基于 WSO-VMD 样本熵和 SSA-SVM 算法的有载分接开关故障诊断方法研究[J]. 西南大学学报(自然科学版),2024,46(11) :203-216.