基于CEEMDAN-VMD和优化LSTM的电力短期负荷预测
马艺铭
(国网辽宁省电力有限公司大连供电公司,辽宁 大连 116001)
摘 要 :电力系统负荷具有波动性高、随机性强、不确定性及复杂度高的特点,为进一步提高电力 短期负荷预测精度,需要深层次挖掘数据间的非线性关系。提出了一种基于自适应噪声完备集合经验模 态分解 (CEEMDAN) 和变分模态分解 (VMD) 二次模态分解的长短期记忆 (LSTM) 网络电力短期负荷预测模型。在利用CEEMDAN对原始数据序列进行初次模态分解得到序分量后,采用K-means手段将序分量样本熵 (SampEn/SE) 聚类为三部分,对其中的强非平稳序列进行VMD技术的二次分解以减弱其非平稳性,将二次分解后得到的序分量与初次模态分解得到的中低频序分量构建为新的组合后分别通过粒子群优化算法 (PSO) 得到最优超参数,代入参数训练后得到各分量最优 LSTM 模型,并融合各模型预测结果得到最终负荷预测值。通过实验表明,相较于其他模型,所提方法在实际预测中具备更好的模型性能和更高的 预测精度。
关键词: 短期负荷预测;二次模态分解;自适应噪声完备集合经验模态分解;变分模态分解;样本熵; 粒子群优化 ;长短期记忆网络
中图分类号 :TM715 文献标识码 :A 文章编号 :1007-3175(2025)11-0041-07
Short-Time Power Load Forecasting Based on CEEMDANVMD and Optimazed LSTM
MA Yi-ming
(State Grid Liaoning Electric Power Co., Ltd. Dalian Power Supply Company, Dalian 116001, China)
Abstract: Power system load is characterized by high volatility, strong randomness, high uncertainty, and high complexity. To further improve the accuracy of short-term power load forecasting, it is necessary to deeply explore the nonlinear relationships between data. A short-term power load forecasting model based on long short-term memory (LSTM) network with secondary modal decomposition combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) is proposed. After the initial modal decomposition of the original data sequence using CEEMDAN to obtain sequential components, the sample entropy (SampEn/SE) of the sequential components is clustered into three parts by K-means method. The strongly non-stationary sequences among them are subjected to secondary decomposition using VMD technology to reduce their non-stationarity. The sequential components obtained from the secondary decomposition and the medium-low frequency sequential components from the initial modal decomposition are constructed into new combinations, and the optimal hyperparameters are obtained for each combination through the particle swarm optimization (PSO) algorithm. After parameter training, the optimal LSTM model for each component is obtained, and the final load forecasting value is derived by fusing the prediction results of each model. Experimental results show that compared with other models, the proposed method exhibits better model performance and higher forecasting accuracy in practical predictions.
Key words: short-term load forecasting; secondary modal decomposition; complete ensemble empirical mode decomposition with adaptive noise ; variational mode decomposition; sample entropy; particle swarm optimization; long short-term memory network
参考文献
[1] 李建林,丁子洋,游洪灏,等 . 构网型储能支撑新型电力系统稳定运行研究[J]. 高压电器,2023, 59(7):1-11.
[2] 李刚,方鸿,刘云鹏,等 . 新型电力系统中的大模型驱动技术:现状、机遇与挑战[J]. 高电压技术, 2024,50(7):2864-2878.
[3] 杨海柱,田馥铭,张鹏,等 . 基于CEEMD-FE和AOALSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022,50(13):126-133.
[4] 戴浩男,张辰灏,甄钊,等 . 基于时空特征聚类和双层动态图卷积网络建模的短期净负荷预测 [J]. 高电压 技术,2024,50(9):3914-3923.
[5] 解振学,林帆,王若谷,等 . 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力,2022, 50(7):45-51.
[6] FUMO N, RAFE BISWAS M A.Regression analysis for prediction of residential energy consumption[J]. Renewable and Sustainable Energy Reviews,2015, 47 :332-343.
[7] AMBER K P, ASLAM M W, HUSSAIN S K.Electricity consumption forecasting models for administration buildings of the UK higher education sector[J]. Energy and Buildings,2015,90 :127-136.
[8] 孔祥玉,马玉莹,艾芊,等 . 新型电力系统多元用户的用电特征建模与用电负荷预测综述 [J]. 电力系统自 动化,2023,47(13):2-17.
[9] 彭曙蓉,彭家宜,杨云皓,等 . 基于时变深度前馈神经网络的风电功率概率密度预测 [J]. 电力科学与技术 学报,2023,38(3):84-93.
[10] 申洪涛,李飞,史轮,等 . 基于气象数据降维与混合深度学习的短期电力负荷预测 [J]. 电力建设,2024, 45(1) :13-21.
[11] 冉启武,张宇航 . 基于模态分解及GRU-XGBoost短期 电力负荷预测 [J]. 电网与清洁能源,2024,40(4) : 18-27.
[12] 赵倩,郑贵林 . 基于WD-LSSVM-LSTM模型的短期电力 负荷预测 [J]. 电测与仪表,2023,60(1) :23-28.
[13] 李焱,贾雅君,李磊,等 . 基于随机森林算法的短期电力负荷预测 [J]. 电力系统保护与控制,2020, 48(21):117- 124.
[14] 张雲钦,程起泽,蒋文杰,等 . 基于EMD-PCA-LSTM的光伏功率预测模型 [J]. 太阳能学报,2021,42(9): 62-69.
[15] WU Z, HUANG N E.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances in Adapt Data Analysis, 2009,1(1) :1-41.
[16] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP),2011 :4144-4147.
[17] 杨德州,刘嘉明,宋汶秦,等 . 基于改进型自适应白噪声完备集成经验模态分解的工业用户负荷预测方法[J]. 电力系统保护与控制,2022,50(4):36-43.
[18] 陈锦鹏,胡志坚,陈纬楠,等 . 二次模态分解组合DBiLSTM-MLR 的综合能源系统负荷预测 [J]. 电力系统 自动化,2021,45(13):85-94.
[19] 赵星宇,吴泉军,朱威 . 基于CEEMDAN和TCN-LSTM模型的短期电力负荷预测[J]. 科学技术与工程,2023, 23(4):1557-1564.
[20] RICHMAN J S, MOORMAN J R.Physiological timeseries analysis using approximate entropy and sample entropy[J].American Journal of Physiology Heart and Circulatory Physiology,2000,278(6): H2039-H2049.