Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

基于WSO-LSTM的风电功率预测技术研究

来源:电工电气发布时间:2026-01-04 15:04浏览次数:4
基于WSO-LSTM的风电功率预测技术研究
 
滕云雷,李桓
(国网山东省电力公司临沂供电公司,山东 临沂 276000)
 
    摘 要 :为了确保电力系统的可靠运行与持续供电,准确的风电功率预测显得尤为重要。提出了一种新的白鲨优化算法-长短期记忆网络 (WSO-LSTM) 模型,用于短期风电功率的预测 ;利用LSTM在自动学习 序列数据特征方面的优势,同时借助WSO的全局优化策略对LSTM层的窗口大小及神经元数量进行优化。 通过标准性能指标,将WSO-LSTM的预测结果与实际功率以及现有模型的预测结果进行了对比,结果表明, WSO-LSTM能够为欧洲 4 个风电场提供准确、可靠且稳健的风电功率预测,预测精度平均提升了 20%~47%。
    关键词 : 白鲨优化算法 ;长短期记忆网络 ;风电功率预测 ;机器学习 ;特征提取
    中图分类号 :TM614 ;TM715     文献标识码 :A     文章编号 :1007-3175(2025)12-0022-07
 
 The Research on Wind Power Prediction Technology Based on WSO-LSTM
 
TENG Yun-lei, LI Huan
(State Grid Shandong Electric Power Company Linyi Power Supply Company, Linyi 276000, China)
 
    Abstract: To ensure the reliable operation and continuous power supply of the power system, accurate wind power prediction is particularly important. This paper proposes a novel white shark optimization algorithm-long short-term memory network (WSO-LSTM) model for short-term wind power prediction. By taking advantage of the strengths of LSTM in automatically learning the features of sequential data, and with the help of the global optimization strategy of WSO, the window size and the number of neurons of the LSTM layer are optimized. Through standard performance indicators, the prediction results of WSO-LSTM were compared with the actual power and the prediction results of existing models. The results show that WSO-LSTM can provide accurate, reliable and robust wind power prediction for four wind farms in Europe, achieving an average improvement in prediction accuracy ranging from 20% to 47%.
    Key words: white shark optimization algorithm; long short-term memory network; wind power prediction; machine learning; feature extraction 
 
参考文献
[1] 杨群力,潘学萍,顾晨,等 . 风电机组仿真模型准确性评估试验与方法 [J]. 电工电气,2024(11) :1-7.
[2] 林海东,匡洪海,王俊,等 . 永磁直驱风电低电压穿越与功率平抑策略研究 [J]. 电工电气,2024(11) :8-14.
[3] 苏向敬,程子凡,聂良钊,等 . 基于AGCN-LSTM模型的海上风电场功率概率预测 [J]. 电力系统自动化, 2024,48(22) :140-149.
[4] FOLEY A M, LEAHY P G, MARVUGIIA A, et al. Current methods and advances in forecasting of wind power generation[J].Renewable Energy,2012,37(1) :1-8.
[5] 卢雪平,董存,王铮,等 . 低温寒潮天气下的风电短期功率预测技术研究 [J] . 电网技术,2024,48(12) : 4833-4843.
[6] MARCIUKAITIS M, KATINAS V, KAVALIAUSKAS A. Wind power usage and predictionprospects in Lithuania[J].Renewable and Sustainable Energy Reviews,2008,12(1) :265-277.
[7] LOUKA P, GALANIS G, SIEBERT N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J].Journal of Wind Engineering and Industrial Aerodynamics:The Journal of the International Association for Wind Engineering, 2008,96(12) :2348-2362.
[8] NIELSEN T S, MADSEN H, NIELSEN H A, et al. Zephyr-The Prediction Models[M].Copenhagen: WIP-Renewable Energies/ETA,2006.
[9] 林鹏 . 基于随机模糊理论的风电功率预测 [D]. 北京 : 华北电力大学,2015.
[10] 王欣,李胜刚,秦斌,等 . 基于模糊支持向量机的风 电场功率预测 [J]. 新型工业化,2014,4(9) :50-55.
[11] 周松林,茆美琴,苏建徽 . 基于主成分分析与人工神经网络的风电功率预测 [J]. 电网技术,2011, 35(9) :128-132.
[12] 张智峰 . 基于改进 FCM与模糊马尔可夫链的风电功率 短期预测方法研究 [D]. 银川 :北方民族大学,2021.
[13] 缪铭狄 . 区间二型 TSK模糊逻辑系统在风电功率预测中的应用 [D]. 兰州 :兰州交通大学,2024.