基于改进DBO算法的储能容量配置优化研究
王崎1 ,杨雯2
(1 上海电力大学 经济与管理学院,上海 201306; 2 国网上海市电力公司长兴供电公司,上海 201913)
摘 要 :风光互补微电网能够提升可再生能源利用率,保障配电网运行稳定,然而其容量配置优化通常涉及高维非线性约束,求解难度较大。构建了以全生命周期成本最优为目标的风光混合储能微电网容量配置模型,并引入改进蜣螂优化算法 (DBO) 进行求解,通过惯性权重因子和动态边界收缩机制的协同作用,提升了在复杂约束下的搜索精度与收敛性能。仿真结果表明,所提方法能够在典型日场景下有效降低系统经济成本,并在不同季节性工况下保持较高的供电可靠性与运行稳定性。基于改进DBO的配 置方案为风光储能微电网的工程应用提供了可行的技术路径,未来可进一步拓展至更大规模多能互补系 统并结合实际运行需求完善动态约束设计。
关键词 : 改进蜣螂优化算法 ;风光混合储能 ;容量配置 ;微电网 ;全生命周期成本
中图分类号 :TM715 ;TM734 文献标识码 :A 文章编号 :1007-3175(2025)12-0016-06
Research on Optimization of Energy Storage Capacity Configuration Based on Improved DBO Algorithm
WANG Qi1 , YANG Wen2
(1 School of Economics and Management, Shanghai University of Electric Power, Shanghai 201306, China;
2 State Grid Shanghai Electric Power Co., Ltd. Changxing Power Supply Company, Shanghai 201913, China)
Abstract: Wind-solar hybrid microgrids can enhance renewable energy utilization rates and ensure stable operation of distribution grids. However, optimizing their capacity configuration typically involves high-dimensional nonlinear constraints, making the solution process quite challenging. A capacity configuration model for wind-solar hybrid energy storage microgrids targeting the optimization of the whole-life cycle cost is constructed, and an improved dung beetle optimization (DBO) algorithm is introduced for solving. Through the synergistic effect of the inertia weight factor and the dynamic boundary contraction mechanism, the search accuracy and convergence performance under complex constraints are improved. Simulation results show that the proposed method can effectively reduce the system economic cost under typical daily scenarios and maintain high power supply reliability and operational stability under different seasonal operating conditions. The configuration scheme based on the improved DBO provides a feasible technical path for the engineering application of wind-solar energy storage microgrids. In the future, it can be further extended to larger-scale multi-energy complementary systems and the dynamic constraint design can be improved in combination with actual operational requirements.
Key words: improved dung beetle optimization algorithm; wind-solar hybrid energy storage; capacity configuration; microgrid; whole-life cycle cost
参考文献
[1] 林旗力,陈珍,王晓虎,等 . 基于“电-氢-电”过 程的规模化氢储能经济性分析 [J]. 储能科学与技术, 2024,13(6) :2068-2077.
[2] 李伟,王师鹏,王英旭 . 考虑源荷匹配的含风光能源微 电网储能容量配置 [J]. 电工技术,2025(10) :94-97.
[3] 王亚平,王雨田,李永毅,等 . 基于MOPSO算法的 风光氢燃气轮机互补系统优化研究 [J]. 热力发电, 2025,54(1) :35-45.
[4] 智筠贻,凌浩恕,吴昊,等 . 风光储多能互补能源系统容量配置优化 [J]. 储能科学与技术,2024, 13(11) :3874-3888.
[5] 孔令国,范乃文,石振宇,等 . 风-储-氢-燃机 协同平抑功率波动运行配置策略 [J]. 高电压技术, 2025,51(5) :2125-2136.
[6] 段晨,何鑫,何其新,等 . 基于改进蜣螂优化算法的微电网经济调度模型 [J]. 电工材料,2025(3) :63-67.
[7] 陈庆明,廖鸿飞,孙颖楷,等 . 改进的蜣螂优化算法及光伏发电功率预测应用 [J]. 太阳能学报,2025, 46(9) :445-454.
[8] 何思敏,李伟,刘立,等 . 基于随机规划的风光柴储容量配比优化方法 [J] . 水电与新能源,2023, 37(2) :74-78.
[9] 许翔 . 风电光伏并网储能容量的配置优化 [J]. 能源与 节能,2025(4) :4-6.
[10] 王剑波,陈会周,高运动 . 考虑新能源消纳的电网储能容量配置研究 [J]. 微型电脑应用,2025,41(3) : 105-109.
[11] 刘斌,罗异,孙周,等 . 基于用能自洽的高速服务区微网光储组合优化配置 [J]. 综合智慧能源,2025, 47(2) :50-59.
[12] 陈慧丽 . 多策略增强型蜣螂优化算法求解路径规划问题 [J]. 机械设计与制造,2025(5) :242-250.