基于MADRL算法的海上风电场功率与载荷联合优化
赵伟康,张宇琪,唐渊
(湖南工业大学 交通与电气工程学院,湖南 株洲 412007)
摘 要 :针对海上风电场尾流损失明显和疲劳损耗分布不均匀导致风电场维护频率高的问题,提出了一种基于多智能体深度强化学习 (MADRL) 的风电场控制策略。通过分析风机的发电功率与疲劳载荷, 建立发电量与疲劳损耗的衡量模型,明确控制变量与状态变量 ;再根据风机之间的气动耦合关系进行分组,构建MADRL优化控制框架,将全部风机之间的合作转变为组内合作加组间合作模式。在WFSim风电场模型中采用MADRL算法进行多目标优化求解,结果表明,所提策略能在风况变化的情况下有效减轻尾 流效应带来的影响,在提升风电场整体发电效率的同时平衡机组间的疲劳损耗。
关键词 : 海上风电场 ;尾流效应 ;多智能体深度强化学习 ;疲劳损耗 ;发电效率
中图分类号 :TM614 ;TM714 文献标识码 :A 文章编号 :1007-3175(2025)12-0009-07
Joint Optimization of Power and Load in Offshore Wind Farms Based on MADRL Algorithm
ZHAO Wei-kang, ZHANG Yu-qi, TANG Yuan
(School of Traffic and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China)
Abstract: To address the high maintenance frequency of offshore wind farms caused by significant wake losses and uneven fatigue damage distribution, a wind farm control strategy based on multi-agent deep reinforcement learning (MADRL) is proposed. By analyzing the relationship between turbine power generation and fatigue loads, a measurement model linking power output and fatigue damage is established to define control variables and state variables. Wind turbines are grouped based on aerodynamic coupling relationships, establishing a MADRL optimization control framework that transforms inter-turbine cooperation into a hybrid model of intra-group and inter-group collaboration. Multi-objective optimization using the MADRL algorithm is performed within the WFSim wind farm model. Results demonstrate that the proposed strategy effectively mitigates wake effects under varying wind conditions, simultaneously enhancing overall power generation efficiency while balancing fatigue losses across turbines.
Key words: offshore wind farm; wake effect; multi-agent deep reinforcement learning; fatigue loss; power generation efficiency
参考文献
[1] Global Wind Energy Council.Global offshore wind report 2025[R].Brussels :GWEC,2025.
[2] 陈婕 .考虑尾流效应的风电场多目标分层随机控制 [D]. 北京 :华北电力大学,2023.
[3] 魏赏赏,李智寒,陈一凯,等 . 基于状态扩张输入输出动态模态分解的风力机尾流降阶模型 [J]. 太阳能学 报,2024,45(10) :580-587.
[4] 樊涛,李刚,马晨阳,等 . 考虑经济性和舒适性的海上风电运维规划优化方法 [J]. 船舶工程,2025, 47(4) :160-169.
[5] MUNOZ-PALOMEQUE E, SIERRA-GARCIAJ E, SANTOS M. Wind turbine maximum power pointtracking control based on unsupervised neural networks[J].Journal of Computational Design and Engineering,2023,10(1) :108-121.
[6] 蔡玮,胡阳,刘吉臻 . 计及尾流的风电场智能等效建模及偏航优化控制 [J]. 动力工程学报,2024, 44(7) :1051-1059.
[7] 王冠朝,霍雨翀,李群,等 . 基于深度强化学习与 改进Jensen模型的风电场功率优化 [J]. 中国电力, 2025,58(4) :78-89.
[8] 褚梦珂,刘春,张勇,等 . 基于多智能体深度强化学习算法的风电场偏航控制策略 [J]. 上海电力大学学报,2025,41(4) :310-317.
[9] YAO Q, MA B, ZHAO T, et al.Optimized active power dispatching of wind farms considering data-driven fatigue load suppression[J].IEEE Transactions on Sustainable Energy,2022, 14(1) :371-380.
[10] 葛畅,阎洁,刘永前,等 . 海上风电场运行控制维护关键技术综述 [J]. 中国电机工程学报,2022, 42(12) :4278-4291.
[11] 蔡玮,胡阳,刘吉臻 . 基于尾流判定的风电场偏航角分群优化控制 [J]. 动力工程学报,2024,44(8) : 1234-1243.
[12] 张勇,刘春,褚梦珂,等 . 计及尾流的改进深度确定性策略梯度风电场功率优化控制策略 [J]. 电力系统及 其自动化学报,2025,37(2) :68-77.
[13] 陈皓勇,席松涛 . 海上风电成本构成及价格机制 [J]. 风能,2022(1) :12-15.
[14] BOERSMA S, DOEKEMEIJER B, VALI M, et al.A control-oriented dynamic wind farm model: WFSim[J].Wind Energy Science,2018,3(1) :75-95.
[15] HE R, YANG H, LU L.Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control[J].Applied Energy,2023,337 :120878.
[16] 许晓玥 . 考虑风机疲劳的风电场功率优化策略 [D]. 长沙 :湖南大学,2021.
[17] WANG X, ZHOU J, QIN B, et al.Coordinated power smoothing control strategy of multi-wind turbines and energy storage systems in wind farm based on MADRL[J].IEEE Transactions on Sustainable Energy,2023,15(1) :368-380.
[18] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R].Golden :National Renewable Energy Laboratory(NREL),2009.
[19] 闫晔 . 考虑风电不确定性的分时电价研究 [D]. 西安 : 西安理工大学,2020.