Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN2097-6623

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

基于LGBM的光伏发电输出功率异常检测方法

来源:电工电气发布时间:2026-01-26 08:26浏览次数:2

基于LGBM的光伏发电输出功率异常检测方法

刘继辉
(国华(江苏)风电有限公司,江苏 盐城 224200)
 
    摘 要:光伏发电系统输出功率具有很大的复杂性,当前短期异常检测因特征提取单一、缺乏针对性,导致结果误差增大。提出基于轻量级梯度提升机(LGBM)的光伏发电输出功率异常检测方法。该方法根据当前检测需求,提取并合并处理输出功率异常特征,全面捕捉系统运行异常模式;接着基于 LGBM 建立输出功率异常位置辨识方法,增强检测针对性,并结合动态化持续检测实现异常处理。以 K 光伏发电站作为测试的目标对象,设定传统 XGBoost 与 GRU 光伏发电输出功率异常检测方法、传统子带处理与相关系数光伏发电输出功率异常检测方法为对比方法,与所提方法分别对该发电输出功率进行异常检测。测试结果表明,该方法在不过多增加复杂度的前提下,异常检测绝对误差较小,检测针对性更强,能在复杂背景下避免干扰,提升检测精度与效率。
    关键词: 轻量级梯度提升机;光伏发电;输出功率;异常检测
    中图分类号:TM615     文献标识码:A     文章编号:2097-6623(2026)01-0067-05
 
Anomaly Detection Method for Photovoltaic Power Generation
Output Power Based on LGBM
 
LIU Ji-hui
(Guohua (Jiangsu) Wind Power Co., Ltd., Yancheng 224200, China)
 
    Abstract: The output power of photovoltaic power generation systems is highly complex. Current short-term anomaly detection suffers from increased result errors due to single feature extraction and lack of targeting. An anomaly detection method for photovoltaic power generation output power based on light gradient boosting machine (LGBM) is proposed. According to current detection requirements, this method extracts and merges abnormal features of output power to comprehensively capture abnormal operation modes of the system; then establishes an output power anomaly location identification method based on LGBM to enhance detection targeting, and combines dynamic continuous detection to achieve anomaly handling. Taking K Photovoltaic Power Station as the test object, traditional XGBoost and GRUbased anomaly detection methods for photovoltaic output power, as well as traditional sub-band processing and correlation coefficient-based methods, are set as comparison methods, and anomaly detection on the power output is conducted respectively with the proposed method.Test results show that on the premise of not excessively increasing complexity, the proposed method has smaller absolute error of anomaly detection, stronger detection targeting, can avoid interference in complex backgrounds, and improve detection accuracy and efficiency.
    Key words: light gradient boosting machine; photovoltaic power generation; output power; anomaly detection
 
参考文献
[1] 李光环,杨小天,刘训钊.XGBoost 与 GRU 模型在发电功率预测中的应用[J]. 福建电脑,2024,40(6) :21-26.
[2] 陈刚,胡凯凯,陈亚楠,等. 基于子带处理与相关系数的风电机组功率异常波动检测[J] . 控制与信息技术,2024(2) :32-39.
[3] 朱振军,刘晓,俞碧霞,等. 汽车尾气热电发电系统最大功率检测算法研究[J]. 内燃机与配件,2024(9):51-53.
[4] 牛伟明. 光伏发电系统中阴影效应与遮挡对发电效率的影响研究[J]. 光源与照明,2024(6) :111-113.
[5] 蔡昌春,范靖浩,李源佳,等. 基于 TPA-MBLSTM 模型的超短期风电功率预测[J] . 电力科学与技术学报,2024,39(1) :47-56.
[6] 张蕊,李安燚,刘世岩,等. 基于波动特征提取下云层分型的短期光伏发电功率预测方法[J] . 太阳能学报,2024,45(11) :330-342.
[7] 吴文宝,封永铭,金声超,等. 基于遗传算法的风电机组发电异常检测[J]. 信息技术与信息化,2023(5):199-203.
[8] 金磊,魏唯,陈龙,等. 硅基沟槽功率器件漏电检测及异常分析[J]. 电子工业专用设备,2022,51(4) :39-42.
[9] 陈宇轩,张耀,徐杨,等. 基于 Boosting 集成框架的新能源发电功率异常值检测方法[J] . 电网技术,2023,47(8) :3261-3268.
[10] 薛安成,顾雷,蒋正威,等. 功率因数角偏差导致的线路无功量测异常及其检测方法[J]. 中国电机工程学报,2023,43(9) :3342-3353.