Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN2097-6623

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

基于PSO-RF的小电流接地系统单相故障选线方法

来源:电工电气发布时间:2026-01-26 10:26浏览次数:2

基于PSO-RF的小电流接地系统单相故障选线方法

钟灵毓秀,郑吴筱添,靳玉洁,吴梦宇,钟建伟,廖红华
(湖北民族大学 智能科学与工程学院,湖北 恩施 445000)
 
    摘 要:针对配电网小电流接地系统发生单相接地故障时选线过程易受噪声干扰、选线精度较低的问题,提出了一种多判据融合的选线方法。该方法结合快速傅里叶变换(FFT)与变分模态分解(VMD)技术,提取各线路零序电流的三种特征分量,构建多维度输入特征;在此基础上,引入粒子群算法优化的随机森林分类器(PSO-RF),以故障线路为输出标签对模型进行训练,实现对新故障数据的准确线路判别。利用 MATLAB/Simulink 软件建立单相接地故障仿真模型进行仿真实验,验证所提方法的有效性,并与现有算法进行对比。结果表明,所提方法在选线准确率方面具有显著优越性,展现出良好的工程应用潜力。
    关键词: 故障选线;小电流接地;粒子群算法;随机森林分类器;多判据融合
    中图分类号:TM711     文献标识码:B     文章编号:2097-6623(2026)01-0045-06
 
Method for Single-Phase Fault Line Selection in Low-Current
Grounding Systems Based on PSO-RF
 
ZHONG Ling-yuxiu, ZHENG Wu-xiaotian, JIN Yu-jie, WU Meng-yu, ZHONG Jian-wei, LIAO Hong-hua
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: In response to the issues of susceptibility to noise interference and relatively low line selection accuracy during single-phase grounding faults in the low-current grounding systems of distribution networks, this paper proposes a multi-criteria fusion-based fault line selection method. This approach integrates fast fourier transform (FFT) and variational mode decomposition (VMD) techniques to extract three characteristic components of the zero-sequence current from each line, thereby constructing multi-dimensional input features. On this basis, the random forest classifier optimized by the particle swarm optimization algorithm (PSO-RF) is proposed in this study. The model is trained using the faulty line as the output label, enabling accurate identification of fault lines in new fault data. A single-phase grounding fault simulation model was established, using MATLAB/Simulink software for simulation experiments to validate the effectiveness of the proposed method, and comparisons are made with existing algorithms. The results demonstrate that the proposed method exhibits significant superiority in fault line selection accuracy, showing promising potential for engineering applications.
    Key words: fault line selection; low-current grounding; particle swarm optimization; random forest classifier; multi-criteria fusion
 
参考文献
[1] WAN Guangfen,XU Xuekun.Research on singlephase grounding detection method in smallcurrent grounding systems based on image recognition[J].Frontiers in Energy Research,2024(12) :1473472.
[2] 高文利,席东民,王晗,等. 基于特征融合与 ELM 的小电流接地选线新方法[J] . 电子测量技术,2023,46(13) :176-184.
[3] NIU Lin, WU Guiqing, XU Zhangsheng.Single-Phase Fault Line Selection in Distribution Network Based on Signal Injection Method[J].IEEE Access,2021(9) :21567-21578.
[4] 束洪春,龚振,田鑫萃,等. 基于故障特征频带及形态谱的单相接地故障选线[J] . 电网技术,2019,43(3) :1041-1048.
[5] 曾照新. 基于零序电流差暂态小波能量的故障选线新方法[J]. 电工技术,2019(3) :16-18.
[6] 谭业涛,向小民,张千千. 基于经验模态分解和 Hausdorff 距离的小电流接地故障选线[J]. 电力学报,2019,34(5) :483-489.
[7] 殷浩然,苗世洪,郭舒毓,等. 基于 S 变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备,2021,41(7) :88-96.
[8] 徐海燕,吴浩,李栋,等. 基于门控循环单元神经网络的配电网故障选线[J] . 电力系统及其自动化学报,2022,34(6) :89-97.
[9] 孙冰,李长星. 基于 BP 神经网络算法的小电流接地选线研究[J]. 电工技术,2024(8) :139-143
[10] 周宣. 融合 GWO 算法与 BP 神经网络的小电流接地选线装置研究[J] . 自动化技术与应用,2025,44(5) :155-159.
[11] 朱晓红,杨伟荣,张蓉,等. 基于 RNN-LSTM 神经网络的小电流接地故障选线方法[J] . 高压电器,2023,59(7) :213-220.
[12] 孙其东,张开如,刘建,等. 基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J]. 电测与仪表,2016,53(16) :1-4.
[13] 刘谋海,方涛,姜运. 基于高频分量相关度分析的故障选线方法[J] . 电力系统及其自动化学报,2017,29(2) :101-106.
[14] 田录林,王伟博,田琦,等. 基于 VMD 能量相对熵的配电网单相接地故障选线方法[J] . 电气应用,2019,38(3) :47-53.
[15] CHEN Ming, XU Pengcheng, LIU Zepeng, et al.Air pollution prediction based on optimized deep learning neural networks:PSO-LSTM[J].Atmospheric Pollution Research,2025,16(3) :102413.
[16] 王烁棪,郑刚,张旭. 基于 PSO-RF 算法的三坐标测量机热误差预测[J] . 组合机床与自动化加工技术,2025(8) :31-36.