Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

寻址编码技术在航空电源系统故障检测与诊断中的应用

来源:电工电气发布时间:2017-11-17 08:17 浏览次数:6
寻址编码技术在航空电源系统故障检测与诊断中的应用
 
黄泽波1,李占峰1,熊亮2,王顺利2
(1 西南科技大学 制造科学与工程学院,四川 绵阳 621010;2 西南科技大学 信息工程学院,四川 绵阳 621010)
 
    摘 要:电源系统故障的有效诊断是保证电源系统安全可靠的重要途径。针对当前航空电源系统故障诊断存在的不足,提出一种寻址编码技术查询故障,并设计故障测试平台,设定故障检测门限,采集数据进行定量分析的新方法。寻址编码结合实测数据定量分析的方法,提高了故障诊断的效率和精度。以某战机的应急电源系统为例,实验验证了此方法故障定位精确、测试效率高,有效解决了航空电源系统故障诊断不准确的问题。
    关键词:电源系统;故障检测与诊断;寻址编码;定量分析
    中图分类号:TP206+.3     文献标识码:A     文章编号:1007-3175(2017)11-0052-04
 
Addressing and Coding Technology Application in Aircraft Power System Fault Detection and Diagnosis
 
HUANG Ze-bo1, LI Zhan-feng1, XIONG Liang2, WANG Shun-li2
(1 School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
2 School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)
 
    Abstract: The effective power system fault diagnosis is an important approach to ensure the power system safe and reliable. In view of the deficiency existing in the current fault diagnosis of aircraft power supply system, this paper proposed a kind of addressing and coding technology to query the fault and designed the fault test platform. The new method set the fault detection threshold and collected the data to carry out the quantitative analysis. Combined with the quantitative analysis of measured data, the addressing and coding method improved the efficiency and accuracy of fault diagnosis. Taking the emergency power supply system of certain aircraft for example, this paper verifies the accurate fault location and the high test efficiency, which effectively solves the problem of inaccurate fault diagnosis in aircraft power system.
    Key words: power system; fault detection and diagnosis; addressing and coding; quantitative analysis
 
参考文献
[1] 王树宗,陶建武,陶军. 飞机电源实时检测及故障诊断系统[J]. 弹箭与制导学报,2002,22(4):184-186.
[2] 朱云鹏. 基于故障树分析法的软件测试技术研究[J]. 计算机工程与设计,2008,29(13):3387-3389.
[3] 陈国华,张根保,任显林,等. 基于故障树分析法的供应链可靠性诊断方法及仿真研究[J]. 计算机集成制造系统,2009,15(10):2305-2307.
[4] 文成林,徐晓滨. 多源不确定信息融合理论及应用[M]. 北京:科学出版社,2012.
[5] 张秦岭,郭宏,姜旭. 大型无人机电源系统故障诊断专家系统[J]. 北京航空航天大学学报,2013,39(8):1026-1030.
[6] 张爱玲,张文英,张瑞金. 控制系统故障检测与诊断技术的最新进展[J]. 系统工程与电子技术,2007,29(4):660-663.
[7] 孔宁,李晓东,罗万明,等. 物联网资源寻址模型[J]. 软件学报,2010,21(7):1658-1665.
[8] 候方园. 基于DHT的物联网资源寻址关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2011.
[9] 饶翔,王怀民,陈振,等. 云计算系统中基于伴随状态追踪的故障检测机制[J]. 计算机学报,2012,35(5):856-870.
[10] 杨培林, 徐凯, 薛冲冲, 等. 基于模型检测的机电系统FMEA研究[J]. 机械工程学报,2016,52(16):162-167.