Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于PSO-RBF的输电线路覆冰预测研究

来源:电工电气发布时间:2018-06-15 14:15 浏览次数:739
基于PSO-RBF的输电线路覆冰预测研究
 
焦晗,黄陈蓉,李焱飞
(南京工程学院 电力工程学院,江苏 南京 211167)
 
    摘 要:覆冰后的架空输电线路在风载荷的作用下,容易产生导线舞动现象,严重危害输电线路安全。提出一种基于PSO-RBF的神经网络模型对输电线路的覆冰情况进行预测,对微气象参数影响因子进行排序,选取合适的微气象因素作为模型的输入,降低建模输入的维度,并通过粒子群算法对RBF神经网络参数进行优化,与单一的RBF神经网络相比提高了预测精度,能及时了解导线覆冰的趋势并给出预警,有效防止严重覆冰事故的发生。
    关键词:架空输电线路;覆冰预测;微气象;神经网络
    中图分类号:TM726     文献标识码:A     文章编号:1007-3175(2018)06-0033-04
 
Prediction Research on Transmission Line Icing Based on Particle Swarm Optimization-Radial Basis Function
 
JIAO Han, HUANG Chen-rong, LI Yan-fei
(School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
 
    Abstract: The icing overhead transmission lines under the action of wind load are easy to generate the galloping phenomenon, which is seriously harmful to the safe operation of transmission lines. This paper proposed a kind of neural network model based on particle swarm optimization-radial basis function (PSO-RBF) to carry out prediction for the icing condition of transmission lines, to sort the micro meteorological parameters, to select the suitable micro meteorological parameters as the input of model and to reduce the dimensions of modeling input. The algorithm of PSO was used to optimize the RBF neural network and compared with the single RBF neural network, its prediction accuracy was improved, which makes the icing trend of transmission lines known in time with warning to effectively prevent serious icing accidents.
    Key words: overhead transmission line; icing prediction; microclimate; neural network
 
参考文献
[1] 蒋兴良,易辉. 输电线路覆冰及防护[M]. 北京:中国电力出版社,2002.
[2] 胡毅. 输电线路大范围冰害事故分析及对策[J]. 高电压技术,2005,31(4) :14-15.
[3] 许博. 架空输电线路覆冰问题研究[J]. 城市建设理论研究,2014(10) :43-44.
[4] 刘和云,周迪,付俊萍,等. 导线雨淞覆冰预测简单模型的研究[J]. 中国电机工程学报,2001,21(4) :44-47.
[5] 黄新波,刘家兵,蔡伟,等. 电力架空线路覆冰雪的国内外研究现状[J]. 电网技术,2008,32(4) :23-28.
[6] 刘春城,刘法栋,毛绪坤,等. 高压输电塔线体系覆冰的研究现状与展望[J]. 东北电力大学学报,2011,31(5/6) :16-22.
[7] 刘春城,刘佼. 输电线路导线覆冰机理及雨凇覆冰模型[J]. 高电压技术,2011,37(1) :241-248.
[8] 晏鸣宇,周志宇,文劲宇,等. 基于短期覆冰预测的电网覆冰灾害风险评估方法[J]. 电力系统自动化,2016,40(21) :168-175.
[9] 阳林,郝艳捧,黎卫国,等.输电线路导线覆冰与导线温度和微气象参数关联分析[J]. 高电压技术,2010,36(3) :775-781.
[10] 何耀耀,许启发,杨善林,等. 基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J]. 中国电机工程学报,2013,33(1) :93-98.
[11] 刘宇,钟平安,张梦然,等.隐层节点数经验公式在水库调度规则提取中的应用效果评价[J]. 水电能源科学,2012(11) :42-44.