基于磁-结构耦合法的变压器绕组振动特性研究
王洋,曹晨,徐建源
沈阳工业大学 电气工程学院,辽宁 沈阳 110870
摘 要:基于S11-M-500/35型变压器,利用有限元磁-结构耦合法分别计算了变压器负载运行、第一次短路冲击、第二次短路冲击过程中的变压器绕组径向振动加速度,研究了变压器绕组的磁场分布,以及变压器绕组在不同预紧力下的模态,并通过短路冲击试验对计算结果进行了验证。结果表明变压器绕组在受到短路冲击后,绕组漏磁通密度变大8.7倍,绕组线圈上承受的电磁力变大,绕组振动加速度幅值变大,仿真结果与试验数据吻合良好,为变压器的优化设计和故障诊断提供了理论依据。关键词:变压器绕组;有限元;短路试验 中图分类号:TM403.2 文献标识码:A 文章编号:1007-3175(2016)02-0005-04
Transformer Winding Vibration Characteristic Research Based on Magnetic-Structure Coupling Method
WANG Yang, CAO Chen, XU Jian-yuan
School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract: Based on the model of transformer S11-M-500/35, this paper used the finite element method to respectively calculate the transformer load operation, the transformer winding radial vibration acceleration in the process of the first short circuit impact and second short circuit impact, and studied the magnetic field distribution of transformer winding and the transformer winding modal under different pre-tightening force, the short-circuit test results verified. The results show that after the transformer winding was impacted by short circuit, the winding leakage magnetic flux density became 8.7 times, the electromagnetic force on winding coils and the winding vibration acceleration amplitude became larger. The simulation result is identical to test data well, which provides the theoretical foundation for optimization design and fault diagnosis of transformers.
Key words: transformer winding; the finite element; short circuit test
参考文献
[1] 王东林.大型变压器绕组短路电动力的计算与分析[D].北京:华北电力大学,2012.
[2] 郭蓉.电力变压器绕组短路电动力计算[D].哈尔滨:哈尔滨理工大学,2014.
[3] 谢坡岸.振动分析法在电力变压器绕组状态监测中的应用研究[D].上海:上海交通大学,2008.
[4] GB 1094.5—2008 电力变压器 第5部分 承受短路的能力[S].
[5] 王录亮,刘文里,刘丹丹,等.轴向预紧力对特大型变压器绕组振动的影响[J].变压器,2012,49(10):11-14.
[6] 李洪奎.大型电力变压器绕组短路强度与稳定性研究 [D].沈阳:沈阳工业大学,2011.
[7] 胡仁喜,孙明礼.ANSYS13.0电磁学有限元分析从入门到精通[M].北京:机械工业出版社,2012.
[8] 陈玉红,杨杰,孟庆民,等.变压器绕组短路振动辐向模拟信号的采集和分析[J].变压器,2011,48(4):33-40.
[9] 谢德馨.三维涡流场的有限元分析[M].2版.北京:机械工业出版社,2008.
[10] 阎照文.ANSYS10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006.
[11] Mortazavian S, Gharehpetian G B, Hejazi M A, et al.A simultaneous method for detection of radial deformation and axial displacement in transformer winding using UWB SAR imaging[C]//2012 4th Conference on Thermal Power Plants(CTPP),2012.
[12] Faiz J, Ebrahimi B M, Abu-Elhajia W.Computation of static and dynamic axial and radial forces on power transformer windings due to inrush and short circuit currents[C]//IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies(AEECT),2011.
[13] Ahn Hyun-Mo, Oh Yeon-Ho, Kim Joong-Kyoung, et al. Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer[J].IEEE Transactions on Magnetics,2012,48(2):819-822.
[14] Bakshi A, Kulkarni S V.Analysis of Buckling Strength of Inner Windings in Transformers Under Radial Short-Circuit Forces[J].IEEE Transactions on Power Delivery,2014,29(1):241-245.
[15] Daneshmand S V,Heydari H.Multiphysics Approach in HTS Transformers with Different Winding Schemes[J].IEEE Transactions on Applied Superconductivity,2014,24(2):1-8.
[16] Cheema M A M, Fletcher J E, Dorrell D, et al. A Novel Approach to Investigate the Quantitative Impact of Harmonic Currents on Winding Losses and Short Circuit Forces in a Furnace Transformer[J].IEEE Transactions on Magnetics,2013,49(5):2025-2028.