Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

均压环对复合绝缘子电场的影响研究

来源:电工电气发布时间:2018-10-17 08:17 浏览次数:665
均压环对复合绝缘子电场的影响研究
 
姚淮林,吴秋亮
(江苏南瑞帕威尔电气有限公司,江苏 南京 211103)
 
    摘 要:以复合支柱绝缘子为研究对象,利用有限元分析数值计算方法对绝缘子电场进行分析计算,并探究均压环对绝缘子电场的改善作用。当绝缘子老化或者工艺欠缺而造成护套内有气泡时,极易发生放电、击穿以及烧蚀现象。同时绝缘子高压法兰部位第一个大小伞承担了较多的电压降,运行中容易造成绝缘失败。在绝缘子高压侧端部加装均压环,并针对均压环的尺寸和安装位置对绝缘子电场的影响进行分析。结果表明,绝缘子加装均压环可以明显改善绝缘子附近的电场分布,降低第一只伞上的电场;且均压环管径越大、外径越小时均压效果越明显。
    关键词:复合绝缘子;电场计算;均压环;绝缘分析
    中图分类号:TM216     文献标识码:A     文章编号:1007-3175(2018)10-0010-05
 
Research of Grading Ring Influence on Composite Insulator Electric Field
 
YAO Huai-lin, WU Qiu-liang
(Jiangsu Nari Power Electric Co., Ltd, Nanjing 2111 03, China)
 
    Abstract: Taking the composite post insulator as the research object, this paper used the finite element analysis numerical computation method to carry out analysis and calculation for insulator electric fields and explored the impacts of grading ring on the insulator electric field. When the insulator aged or there were bubbles in the sheath due to technology defects, the discharge, breakdown and ablation phenomenon happened easily. And the field intensity concentrated around the first umbrella which might lead to the insulation fault, so a grading ring is set up at the end of high voltage flange and then its electrical field was calculated taking different dimensions and installation site of grading ring into consideration. The calculation results show that the insulator added the grading ring could obviously improve the electrical distribution around the insulator to reduce the electric field of the first umbrella, in addition, the electrical distribution will turn more average with larger diameter and more far location.
    Key words: composite insulator; electrical field calculation; grading ring; insulation analysis
 
参考文献
[1] 李翔,顾洪连. 三种绝缘子可靠性的比较[J]. 高电压技术,2007,33(5):191-193.
[2] 倪光正. 工程电磁场原理[M].3 版. 北京:高等教育出版社,2016.
[3] 厉伟,滕云,庚振新,等. 高电压工程[M]. 北京:科学出版社,2011.
[4] 黄道春,阮江军,刘佳,等.330 kV绝缘子串电压分布和屏蔽环位置的优化[J]. 高电压技术,2007,33(1):91-94.
[5] 沈鼎申,张孝军,万启发,等.750 kV线路绝缘子串电压分布的有限元计算[J]. 电网技术,2003,27(12):54-57.
[6] VOLAT C, FARZANEH M.Three-dimensional modeling of potential and electric field distributions along an EHV ceramic post insulator covered with ice—PartI: Simulations of a melting period[J].IEEE Transactions on Power Delivery,2005,20(3):2006-2013.
[7] 谢天喜,刘鹏,李靖,等. 交流1 000 kV同塔双回输电线路复合绝缘子电场分布[J]. 高电压技术,2010,36(1):224-229.
[8] 刘渝根,田金虎,刘孝为,等.750 kV同塔双回输电线路瓷绝缘子串电位分布数值分析[J]. 高电压技术,2010,36(7):1644-1650.
[9] 司马文霞, 邵进, 杨庆. 应用有限元法计算覆冰合成绝缘子电位分布[J]. 高电压技术,2007,33(4):21-25.
[10] 樊亚东,文习山,李晓萍,等. 复合绝缘子和玻璃绝缘子电位分布的数值仿真[J]. 高电压技术,2005,31(12):1-3.
[11] 徐志钮,律方成,李和明,等. 绝缘子电场有限元分析法的影响因素及其优化[J]. 高电压技术,2011,37(4):944-951.
[12] ZIENKIEWICA O C, TAYLOR R L,曾攀. 有限元方法基本原理[M].5 版. 北京:清华大学出版社,2008.