基于社群特征的配电网异常用电行为分析
董津辰,雷景生
(上海电力学院 计算机科学与技术学院,上海 200090)
摘 要:针对目前配电网异常用电行为精度欠佳、效率低下、人力资源耗费量大等问题,在海量用电数据中利用数据挖掘技术实现异常用电数据的精确查找与定位。通过引入社群习惯的行业季节用电水平等异常分类指标,对可能存在非技术性损耗(NTL)的配网用户进行分析和检测,利用改进粒子群LM 神经网络算法建立了有效的异常用电行为的自动识别模型。实验结果表明:该模型能够有效地提取用电特征,实现对异常用户的检测,具有较强的识别能力和较高的实用性。
关键词:异常用电;非技术性损耗;社群特征;改进粒子群算法
中图分类号:TM744 文献标识码:A 文章编号:1007-3175(2019)01-0014-06
Abnormal Power Consumption Behavioural Analysis of Power Distribution Network Based on Association Characteristic
DONG Jin-chen, LEI Jing-sheng
(College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China)
Abstract: In order to solve the problem of poor accuracy, low efficiency, and high consumption of human resources in abnormal power consumption of power distribution network, this paper used data mining technology to accurately locate abnormal power consumption data in magnanimity power utilization data. The network users who might have non-technical loss (NTL) were analyzed and detected by using the industry's seasonal power consumption level of the community's habits and other abnormal classification indicators. The improved particle swarm LM neural network optimization algorithm was utilized to establishe an effective automatic recognition model for abnormal power consumption. The experimental results show that this model can effectively extract the electricity characteristics and realize the detection of abnormal users with strong recognition ability and high practicability.
Key words: abnormal power consumption; non-technical loss; community feature; improved particle swarm optimization
参考文献
[1] 宋亚奇,周国亮,朱永利. 智能电网大数据处理技术现状与挑战[J]. 电网技术,2013,37(4):927-935.
[2] LEAL A G, BOLDT M. A big data analytics design patterns to select customers for electricity theft inspection[C]//IEEE PES Transmission & Distribution Conference & Exposition-Latin America,2016.
[3] CABRAL J E, GONTIJO E M, PINTO J O P, et al. Fraud detection in electrical energy consumers using rough sets[C]//IEEE International Conference on Systems, Man and Cybernetics,2004.
[4] FOURIE J W, CALMEYER J E. A statistical method to minimize electrical energy losses in a local electricity distribution network[C]//IEEE Africon Conference in Africa,2004.
[5] BILBAO J, TORRES E, EGUFA P, et al. Determination of energy losses[C]//16th International Conference & Exhibition on Electricity Distribution,2001.
[6] MONEDERO I, BISCARRI F, LEON C, et al. Detection of frauds and other non-technical losses in a power utility using Pearson coefficient, Bayesian networks and decision trees[J]. International Journal of Electrical Power & Energy Systems,2012,34(1):90-98.
[7] FILHO J R, GONTIJO E M, DELAIBA A C, et al. Fraud identification in electricity company customers using decision tree[C]//IEEE International Conference on Systems, Man and Cybernetics,2004.
[8] NIZAR A H, DONG Z Y, ZHAO J H, et al. A data mining based NTL analysis method[C]//IEEE Power Engineering Society General Meeting,2007.
[9] NAGI J, MOHAMMAD A M, YAP K S, et al. Non-Technical Loss Analysis for Detection of Electricity Theft Using Support Vector Machines[C]//IEEE 2nd International Power & Energy Conference,2008.
[10] NAGI J, YAP K S, TIONG S K, et al. Improving SVM-Based Nontechnical Loss Detection in Power Utility Using the Fuzzy Inference System[J]. IEEE Transactions on Power Delivery,2011,26(2):1284-1285.
[11] 薛安荣,姚林,鞠时光,等. 离群点挖掘方法综述[J]. 计算机科学,2008,35(11):13-18.
[12] 刘涛,杨劲锋,阙华坤,等. 自适应的窃漏电诊断方法研究及应用[J]. 电气自动化,2014,36(2):60-62.
[13] 张长胜,欧阳丹彤,岳娜,等. 一种基于遗传算法和LM 算法的混合学习算法[J]. 吉林大学学报( 理学版),2008,46(4):675-680.
[14] 马廷洪,姜磊. 基于混合粒子群算法优化BP神经网络的机床热误差建模[J]. 中国工程机械学报,2018,16(3):221-224.
[15] 田野,张程,毛昕儒,等. 运用PCA改进BP神经网络的用电异常行为检测[J]. 重庆理工大学学报( 自然科学版),2017,31(8):125-133.