Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于最大流中心性指标的电网脆弱性分析

来源:电工电气发布时间:2019-02-19 10:19 浏览次数:44
基于最大流中心性指标的电网脆弱性分析
 
术茜,林毅斌,陈少芳
(国网漳州供电公司,福建 漳州 363000)
 
    摘 要:根据电力系统功率不一定只通过最短路径流动的思想,提出了一种基于线路流过的最大功率流的中心性指标识别方法。该方法在考虑物理连接拓扑特性的同时,还考虑了系统的电气特性,把导纳矩阵作为网络的权值,建立电力系统的有向模型,计算网络最大流,通过中心性指标来识别网络的脆弱线路。以IEEE39节点系统作为算例,并通过PSAT 软件进行时域仿真,验证了辨识线路的有效性。
    关键词:电力系统;最大流;中心性指标
    中图分类号:TM711     文献标识码:A     文章编号:1007-3175(2019)02-0025-04
 
Vulnerability Analysis of Power Grid Based on Maximum Flow Centrality Index
 
ZHU Xi, LIN Yi-bin, CHEN Shao-fang
(State Grid Zhangzhou Power Supply Company, Zhangzhou 363000, China)
 
    Abstract: According to the thought that the power might not necessarily flow only through the shortest path, this paper proposed a kind of centrality indexidentification method based on maximum power flow through the circuits. This method considered not only the physical connection topological property, but also the system electrical specification, took the admittance matrix as the weight of network, built the directed model of power system and calculated the maximum flow of network. The centrality index was used to identify the vulnerability circuit of network. Taking IEEE39 node system for example, this paper carried out time-domain simulation to verify the validity of identification circuit.
    Key words: power system; maximum flow; centrality index
 
参考文献
[1] ERDOS P, RENYI A. On the evolution of random graphs[J].Transactions of the American Mathemational Society,2011,286(1):257-274.
[2] WATTS D J, STROGATZ S H.Collective dynamics,of“small-world”networks[J]. Nature,1998,393(6684):440-442.
[3] WATTS D J.Small Worlds:They Dynamics of Networks between Order and Randomness[J]. Emergence Complexity & Organization,1999,31(2):74-75.
[4] LATORA V, MARCHIORI M.Efficient behaviour of small-world networks[J]. Physical Review Letters,2001,87(19):198701.
[5] BARABASI A L, ALBERT R.Emergence of scaling in random networks[J]. Science,1999,286(5439):509-512.
[6] 丁明,韩平平. 基于小世界拓扑模型的大型电网脆弱性评估算法[J]. 电力系统自动化,2006,30(8):7-10.
[7] AMARAL L A N, SCALA A, BARTHELEMY M, STANLEY H E.Classes of small world networks[J]. Proceedings of the National Academny of Sciences of the United States of America,2000,97(21):11149-11152.
[8] HINES P, BLUMSACK S. A centrality measure for electrical networks[C]//Proceedings of 41st Hawaii International Conference on System Sciences,2008:185.
[9] ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature,2000,340(1):378-382.
[10] 陈晓刚,孙可,曹一家. 基于复杂网络理论的大电网结构脆弱性分析[J]. 电工技术学报,2007,22(10):138-144.
[11] 丁明,韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报,2008,28(10):20-25.
[12] CHASSIN D P, POSSE C. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model[J]. Physica A Statistical Mechanics & Its Applications,2005,355(2):667-677.
[13] 田丰,马仲蕃. 图与网络流理论[M]. 北京:科学出版社,1987.
[14] 曹一家,陈晓刚,孙可. 基于复杂网络理论的大型电力系统脆弱线路辨识[J]. 电力自动化设备,2006,26(12):1-5.