Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

一种基于综合推理的变压器故障诊断方法

来源:电工电气发布时间:2019-03-22 12:22 浏览次数:15
一种基于综合推理的变压器故障诊断方法
 
胡善芝,周冬旭,唐仁权
(国网南京供电公司,江苏 南京 210019)
 
    摘 要:针对现有变压器油中溶解气体分析方法的不足,提出一种基于综合优化的故障诊断方法。将本体论与案例推理方法相结合,通过定义变压器故障诊断领域知识与案例知识的使用、聚集关系,建立了基于本体论的变压器故障案例库,并进行案例推理。若无匹配源案例,则转入基于判错损失最小的可拓推理机制,通过建立变压器各类故障的物元集模型,在考虑故障先验概率的基础上,引入错判损失最小函数,提高了可拓推理的准确度。通过对收集的200余例变压器故障实际DGA数据计算,并将诊断结果与IEC三比值法、可拓推理方法相比较,验证了所提方法的有效性。
    关键词:变压器;故障诊断;案例推理;可拓推理;错判损失
   中图分类号:TM401+.1     文献标识码:A       文章编号:1007-3175(2019)03-0023-06
 
 A Kind of Fault Diagnosis Method of Power Transformer Based on Integrated Reasoning
 
 HU Shan-zhi, ZHOU Dong-xu, TANG Ren-quan
(State Grid Nanjing Power Supply Company, Nanijng 210019, China)
 
    Abstract: Aiming at the shortage of existing gas dissolved analysis method in transformer oil, this paper proposed a fault diagnosis method based on comprehensive optimization. Combining the ontology with the case reasoning method, this paper established the case base of transformer faults based on the ontology and carried out case-based reasoning, with the definition of usage and aggregation relationship of knowledge of transformer faults diagnosis domain and cases. The extension reasoning mechanism based on the minimum of erroneous judgement started if there was no matching source case. The matter-element model of transformer faults was established, in consideration of the prior probability of all kinds of faults, which improved the accuracy of the extension reasoning. The effectiveness of this method is proved by 200 faults diagnosis examples of transformers, by comparing the results of the diagnosis with the IEC three-ratio method and the extension
reasoning mechanism.
    Key words: power transformer; fault diagnosis; case-based reasoning; extension reasoning mechanism; erroneous judgement loss
 
参考文献
[1] 郑烨,黄海,赵海峰,等. 变压器故障诊断专家系统的改良设计[J]. 电工电气,2014(1):47-50.
[2] 束洪春.孙向飞,司大军. 电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法[J]. 中国电机工程学报,2002,22(2):3l-35.
[3] LEEH J, AHN B S, PARKY M. A Fault Diagnosis Expert System for Distribution Substations[J]. IEEE Transactions on Power Delivery,2000,15(1):92-97.
[4] 张珂斐,郭江,聂德鑫,等. 基于化学反应优化神经网络与融合DGA算法的油浸式变压器模型研究[J]. 高电压技术,2016,42(4):1275-1281.
[5] 莫娟,王雪,董明,等. 基于粗糙集理论的电力变压器故障诊断疗法[J]. 中国电机工程学报,2004,24(7):162-167.
[6] 王建元,纪延超. 模糊Petri网络知识表示方法及其在变压器故障诊断中的应用[J]. 中国电机工程学报,2003,23(1):121-125.
[7] 朱永利,吴立增,李雪玉. 贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J]. 中国电机工程学报,2005,25(10):159-165.
[8] 陈小青,刘觉民,黄英伟,等.采用改进人工鱼群优化粗糙集算法的变压器故障诊断[J]. 高电压技术,2012,38(6):1403-1409.
[9] 杨兵,丁辉,罗为民,等. 基于知识库的变压器故障诊断专家系统[J]. 中国电机工程学报,2002,22(10):121-124.
[10] GUARINO N.Formal Ontology and Information System[M].Trento:IOS Press,1998.
[11] 邰丽君, 赵韩, 董玉德, 等. 基于本体的机械产品知识仓库研究与应用[J]. 工程图学学报,2010(2):1-8.
[12] 黄文涛,赵学增,王伟杰,等. 基于物元模型的电力变压器故障的可拓诊断方法[J]. 电力系统自动化,2004,28 (13):45-49.
[13] 原电力工业部. 变压器油中溶解气体分析和判断导则:GB/T 7252—2001[S]. 北京:中国电力出版社,2001:15-16.