铝合金电缆与铜电缆过载暂态温升过程对比分析
刘杰1,梁经龙1,郝静亮1,黄位华1,张延辉2,蓝磊2,王羽2
(1 中国能源建设集团山西省电力勘测设计院有限公司,山西 太原 030073;2 武汉大学 电气与自动化学院,湖北 武汉 430072)
摘 要:以常见的水平排布的直埋单芯电缆为例,采用通过暂态热路法和有限元法,在等载流量情况下,计算两种电缆在突然过载后由90 ℃的稳态运行情况暂态向105 ℃的稳态过渡过程中的热时间常数,结果表明:相同的载流量时铝合金电缆的热时间常数大于铜电缆,即通过相同的时间,铝合金电缆的温升低于铜缆,暂态热路法和有限元法计算结果接近,过载情况下铝合金电缆具有较为优良的性能。
关键词:铝合金电缆;铜电缆;暂态过程;热时间常数
中图分类号:TM247 文献标识码:A 文章编号:1007-3175(2020)02-0027-04
Comparative Analysis of Transient Temperature Rise Process of Aluminum Alloy Cable and Copper Cable
LIU Jie1, LIANG Jing-long1, HAO Jing-liang1, HUANG Wei-hua1, ZHANG Yan-hui2, LAN Lei2, WANG Yu2
(1 Shanxi Electric Power Survey and Design Institute Co., Ltd, China Energy Engineering Group Co., Ltd, Taiyuan 030073, China;
2 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
Abstract: Taking a common horizontally-displaced single-core cable for example, this paper adopted the steady-state thermal path method and the finite element method to calculate the thermal time constant of two kinds of cables in the transition process from the steady-state operation at 90 °C to the steady-state operation at 105 °C after the sudden overload under the same current carrying capacity conditions. The result shows that the thermal time constant of the aluminum alloy cable is greater than that of the copper cable under the same current carrying capacity, that is, the temperature rise of the aluminum alloy cable is lower than that of the copper cable through the same time. The calculation results of transient thermal path method are close to the finite element method and the aluminum alloy cable has better performance under overload conditions.
Key words: aluminum alloy cable; copper cable; transient process; thermal time constant
参考文献
[1] 谢莉杰. 铝合金电缆发展趋势及应用的研究[J]. 质量技术监督研究,2018(1):25-29.
[2] 郑雁翎,王宁,李洪杰,等. 电力电缆载流量计算的方法与发展[J]. 电气应用,2010,29(3):26-31.
[3] International Electrotechnical Commission. Calculation of the current rating of electric cables, part1:current rating equations(100% load factor) and calculation of losses, section1: general: IEC 60287-1-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:11-24.
[4] International Electrotechnical Commission. Calculation of the current rating of electric cables, part2: thermal resistance, section1: general: IEC 60287-2-1-2006[S]. Geneva: International Electrotechnical Commission Publication,2006:19-39.
[5] International Electrotechnical Commission.Calculation of the cyclic and emergency current rating of cables, part2:cyclic rating of cables greater than 18/30(36) kV and emergency ratings for cables of all voltages:IEC 60853-2-2008[S].Geneva:International Electrotechnical Commission Publication,2008:24-31.
[6] 刘毅刚,罗俊华. 电缆导体温度实时计算的数学方法[J]. 高电压技术,2005,31(5):52-54.
[7] 雷成华. 高压单芯电缆动态增容的理论分析与实验研究[D]. 广州:华南理工大学,2012.
[8] 傅晨钊,司文荣,祝令瑜,等. 土壤直埋单芯电缆暂态温升计算模型的研究[J]. 高压电器,2018,54(1):158-163.
[9] 王鹏.10 kV三芯电缆及附件线芯温度计算与实验研究[D]. 广州:华南理工大学,2016.
[10] 殷潇波.110 kV以上高压电缆敷设周期性载流量研究[D]. 上海:上海交通大学,2010.
[11] 王有元,陈仁刚,陈伟根,等. 有限元法计算地下电缆稳态温度场及其影响因素[J]. 高电压技术,2009,35(12):3086-3092.
[12] 张尧,周鑫,牛海清,等. 单芯电缆热时间常数的理论计算与试验研究[J]. 高电压技术,2009,35(11):2801-2806.