基于局部模糊推理的区域电力系统超短期负荷预算方法
武晓朦1,宋晨曦1,2
(1 西安石油大学 电子工程学院,陕西 西安 710005;2 陕西省油气井测控技术重点实验室,陕西 西安 710065)
摘 要:为了解决传统超短期负荷预算方法误差较大的问题,提出一种基于局部模糊推理的区域电力系统超短期负荷预算方法。使用局部模糊推理定义利用的电力系统负荷历史数据,使用序偶法处理负荷数据的模糊集,计算数据的模糊度,得出时点负荷的偏离程度。规定特征时间尺度,依据特征时间尺度的数量关系,预测超短期随机电荷分量,计算电荷分量的均值,形成新的负荷序列,平滑处理得到最终的超短期负荷预算表达式,完成对区域电力系统超短期负荷的预算。实验表明:与传统基于BP 神经网络的短期负荷预算方法相比,基于局部模糊推理的区域电力系统超短期负荷预算方法误差率只有0.07%,误差更小,更适合预算区域电力系统的超短期负荷。
关键词:局部模糊推理;区域电力系统;超短期负荷;误差率
中图分类号:TM715 文献标识码:A 文章编号:1007-3175(2020)03-0032-04
Ultra-Short Term Load Budget Method for Regional Power System Based on Local Fuzzy Reasoning
WU Xiao-meng1, SONG Chen-xi1,2
(1 School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710005, China;
2 Shaanxi Key Laboratory of Oil and Gas Well Measurement and Control Technology, Xi’an 710065, China)
Abstract: In order to solve the problem of large errors in traditional ultra-short-term load budget method, a regional power system ultrashort-term load budget method based on local fuzzy reasoning is proposed. Local fuzzy reasoning is used to define the historical load data of the power system, and the fuzzy set of load data is processed using the method of sequence coupling. The sequential couple method is used to process the fuzzy sets of load data, calculate the fuzziness of the data, get the deviation degree of the load at the time point. By specifying the characteristic time scale and predicting the ultra-short-term random charge component according to the quantity relationship of the characteristic time scale, the average value of the charge component is calculated to form a new load sequence, and the smoothing process is used to obtain the final ultra-short-term load budget expression, thereby completing the regional budget for ultra short-term load of the power system. Experiments show that compared with the traditional short-term load budgeting method based on BP neural network, the ultra-short-term load budgeting method of regional power systems based on local fuzzy reasoning has an error rate of only 0.07%, and the error is smaller, which is more suitable for the ultra-short-term load of the budgeted regional power system.
Key words: local blur reasoning; regional power system; ultra-short term load; error rate
参考文献
[1] 张宇帆,艾芊,林琳,等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术,2019,43(6):1884-1891.
[2] 曲正伟,张坤,王云静,等. 基于PSO-OMP优化的WD-ASD超短期负荷预测[J]. 电工电能新技术,2017,36(12):39-45.
[3] 张丽,张涛,王福忠,等. 基于柔性负荷响应特性的超短期预测方法[J]. 电力系统保护与控制,2019,47(9):27-34.
[4] 许刚, 吴舜裕. 区域负荷趋势特征分析与金字塔模型超短期预测方法[J]. 计算机工程,2018,44(2):287-293.
[5] 熊军华,牛珂,张春歌,等. 基于小波变异果蝇优化支持向量机短期负荷预测方法研究[J]. 电力系统保护与控制,2017,45(13):71-77.
[6] 孔祥玉,郑锋,鄂志君,等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化,2018,42(5):133-139.
[7] 于惠鸣,张智晟,龚文杰,等. 基于深度递归神经网络的电力系统短期负荷预测模型[J]. 电力系统及其自动化学报,2019,31(1):112-116.
[8] 谢真桢,杨秀,张鹏,等. 基于信息论与混合聚类分析的短期负荷预测方法研究[J]. 电测与仪表,2017,54(19):67-72.
[9] 孙海蓉,谢碧霞,田瑶,等. 基于数据的SecRPSOSVM短期电力负荷预测[J]. 系统仿真学报,2017,29(8):1829-1836.
[10] 朱祥和. 基于小波变换和改进萤火虫算法优化极限学习机的短期负荷预测[J]. 数学的实践与认识,2017(3):136-144.
[11] 王为国,窦震海,申晋,等. 基于逆推理论改进模糊均生函数的短期负荷预测[J]. 水电能源科学,2017(12):208-211.
[12] 史佳琪,谭涛,郭经,等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术,2018,42(3):698-706.
[13] 林芳, 林焱, 吕宪龙, 等. 基于均衡KNN算法的电力负荷短期并行预测[J]. 中国电力,2018,51(10):88-94.
[14] 刘明顺,龙志君,赵立进,等. 基于模糊推理的电网风险评估及线路重要度辨识[J]. 电力科学与技术学报,2017,32(3):131-138.