Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 文章浏览排名

基于数据简化拟合的电动公交车充电负荷预测

来源:电工电气发布时间:2020-03-27 13:27 浏览次数:1128
基于数据简化拟合的电动公交车充电负荷预测
 
端祝超
(江苏省送变电有限公司,江苏 南京 210028)
 
    摘 要:在测量统计大量电动公交车相关数据的基础上,对电动公交车的行驶和充电规律进行了量化分析和数据简化处理。根据电动公交车电池容量、行驶里程、环境条件等信息构建了基于数据简化的电动公交车充电功率模型和计算方法。基于上述简化后的数据信息和相关计算模型,利用优化的蒙特卡洛法对某市电动公交车的充电负荷进行了预测,并分析了不同时长预测负荷的误差及其原因,验证了该方法准确性和可行性。数据的简化处理有效地提高了该预测方法的可实施性,且其预测结果能够满足充电设施规划建设和电网运行规划的要求。
    关键词:电动公交车;行驶规律;充电负荷预测;蒙特卡洛法;数据简化
    中图分类号:TM714     文献标识码:A     文章编号:1007-3175(2020)03-0023-05
 
Electric Bus Charging Load Forecast Based on Data Simplification Fitting
 
DUAN Zhu-chao
(Jiangsu Power Transmission and Transfer Co., Ltd, Nanjing 210028, China)
 
    Abstract: Based on the measurement and statistics of a large number of relevant data of electric bus, the quantitative analysis and data simplification of the driving and charging rules are carried out. According to the information of battery capacity, driving distance and environmental conditions, the charging power model and calculation method based on data simplification are constructed. Based on the simplified data information and related calculation model, the optimized Monte Carlo method is used to predict the charging load of electric buses in a city, and the error of the forecasting load with different duration and its causes are analyzed. The accuracy and feasibility of the method are verified. The simplified processing of the data can effectively improve the operability of the prediction method, and the prediction result can meet the requirements of the charging facility planning construction and the grid operation planning.
    Key words: electric bus; driving rules; charging load forecasting; Monte Carlo method; data simplification
 
参考文献
[1] 苏小林,张艳娟,武中,等. 规模化电动汽车充电负荷的预测及其对电网的影响[J]. 现代电力,2018,35(1):45-54.
[2] 田立亭,张明霞,汪奂伶. 电动汽车对电网影响的评估和解决方案[J]. 中国电机工程学报,2012,32(31):43-49.
[3] 胡泽春,宋永华,徐智威,等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报,2012,32(4):1-10.
[4] 李惠玲,白晓民. 电动汽车充电对配电网的影响及对策[J]. 电力系统自动化,2011,35(17):38-43.
[5] 罗卓伟,胡泽春,宋永华,等. 电动汽车充电负荷计算方法[J]. 电力系统自动化,2011,35(14):36-42.
[6] KRISTIEN C N, EDWIN H, JOHAN D.The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Transactions on Power Systems,2010,25(1):371-380.
[7] 宫鑫,林涛,苏秉华. 插电式混合电动汽车充电对配电网的影响[J]. 电网技术,2012,36(11):30-35.
[8] 汪德夫,张树冰. 考虑时空分布的电动汽车充电负荷预测及对电网负荷影响分析[J]. 电力学报,2017,32(6):483-489.
[9] 王森,冯耀轩,邓文雄,等. 考虑时空特性分布的电动汽车充电负荷预测[J]. 浙江电力,2016,35(12):15-20.
[10] 陈昕儒,林祥逸,吴奇珂. 计及用户行为的电动汽车负荷预测[J]. 电工技术,2017(1):129-130.
[11] 王海玲,张美霞,杨秀. 考虑环境温度的电动汽车充电负荷预测[J]. 上海电力学院学报,2017,33(2):138-144.
[12] 唐晋娟. 不良天气条件下高速公路交通安全影响分析[D]. 南京:南京林业大学,2010.
[13] 田立亭,史双龙,贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术,2010,34(11):126-130.
[14] TAYLOR J, MAITRA A, ALEXANDER M, et al. Evalution of the impact of plug-in electric vehicle loading on distribution system operations[C]//IEEE Power & Energy Society General Meeting, 2009:1-6.