Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

220 kV同塔双回线路雷击闪络故障分析

来源:电工电气发布时间:2020-04-18 14:18 浏览次数:1022
220 kV同塔双回线路雷击闪络故障分析
 
徐文玲1,周路遥2
(1 中铁武汉电气化局集团上海分公司,上海 201713;2 国网浙江省电力有限公司电力科学研究院,浙江 杭州 310014)
 
    摘 要:对某220 kV同塔双回线路雷击闪络故障进行分析。根据故障巡视情况、雷电信息数据、故障录波情况、ATP-EMTP暂态仿真分析可综合判定本次双回同跳故障为雷电反击造成,具体过程为:雷电击中75#塔顶或相邻地线,雷电流由杆塔接地装置注入大地,导致75# 杆塔塔顶及塔身电位升高,在双回线路的B、C两相形成反击过电压,引起绝缘子串闪络并发生线路同跳。提出根据线路通道的雷害评估结果来实施防雷整改,通过安装线路避雷器及在杆塔下方架设耦合地线的改造措施,显著提高了线路耐雷水平。
    关键词:线路同跳;反击;雷电信息数据;故障录波;ATP-EMTP
    中图分类号:TM863     文献标识码:B     文章编号:1007-3175(2020)04-0048-04
 
Analysis of Lightning Flashover Fault on 220 kV Double Circuit Transmission Lines on the Same Tower
 
XU Wen-ling1, ZHOU Lu-yao2
(1 Wuhan Railway Electrification Bureau Group Shanghai Subsidiary, Shanghai 201713, China;
2 Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd, Hangzhou 310014, China)
 
    Abstract: The lightning flashover failure of a 220 kV double-circuit transmission line is analyzed. According to the fault inspection situation, lightning information data, fault recording conditions, and ATP-EMTP transient simulation analysis, it can be comprehensively determined that the case of simultaneous tripping of double circuit lines was caused by lightning counterattack. The specific process is: the lightning hits 75 # tower top or adjacent ground line, lightning current is injected into the ground by the pole grounding device, which causes the potential of the tower top and tower body of 75 # rising, and counterattack over-voltage is formed in the B and C phases of the double-circuit line, causing the insulator string flashover and line trip. It is proposed to implement the lightning protection rectification based on the results of the lightning damage assessment of the line channel, and the lightning protection level of the line was significantly improved by the installation of line lightning arresters and the reconstruction measures of coupling ground lines under the tower.
    Key words: simultaneous trip-out; counterattack; lightning information data; fault recording; ATP-EMTP
 
参考文献
[1] 杜林, 戴斌, 司马文霞, 等. 架空输电线路雷电过电压识别[J]. 高电压技术,2010,36(3):590-597.
[2] 黄志都, 廖民传, 黄锋, 等. 同塔多回输电线路雷击同跳及应对措施研究[J]. 电瓷避雷器,2019(2):142-145.
[3] 赵淳, 阮江军, 李晓岚, 等. 输电线路综合防雷措施技术经济性评估[J]. 高电压技术,2011,37(2):290-297.
[4] 杜林,陈寰,陈少卿,等. 架空输电线路雷电绕击与反击的识别[J]. 高电压技术,2014,40(9):2885-2893.
[5] 中华人民共和国住房和城乡建设部. 交流电气装置的过电压保护和绝缘配合设计规范:GB/T 50064—2014[S]. 北京:中国计划出版社,2014:18-22.
[6] 中华人民共和国国家质量监督检测检疫总局. 输电线路分布式故障诊断系统:GB/T 35721—2017[S]. 北京:中国计划出版社,2017:25-32.
[7] 王剑,谷山强,赵淳,等. 计及工作电压时同塔双回输电线路雷击闪络特性[J]. 高电压技术,2014,40(9):2923-2930.
[8] 国家电网公司. 交流架空输电线路用绝缘子使用导则 第2 部分:复合绝缘子:Q/GDW 515.2—2010[S]. 北京:中国电力出版社,2010:5-13.
[9] 张思寒. 避雷器配置方式对220 kV同塔多回输电线路防雷效果研究[J]. 电瓷避雷器,2015(2):82-86.
[10] 李振,余占清,何金良,等. 线路避雷器改善同塔多回线路防雷性能的分析[J]. 高电压技术,2011,37(12):3120-3128.