Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 文章浏览排名

交流XLPE电缆典型绝缘缺陷的PD特性与类型识别

来源:电工电气发布时间:2020-06-18 15:18 浏览次数:992
交流XLPE电缆典型绝缘缺陷的PD特性与类型识别
 
何若冰1,陈佳2,朱劲松1,杨旭2,姚雨杭3,潘成3,唐炬3
(1 广东电网有限责任公司阳江供电公司,广东 阳江 529500;2 国网电力科学研究院武汉南瑞有限责任公司,湖北 武汉 430074;
3 武汉大学 电气与自动化学院,湖北 武汉 430072)
 
    摘 要:针对交联聚乙烯(XLPE) 电缆及其附件常见的9种绝缘缺陷类型,制作了相应的缺陷模型,研究了9种缺陷在不同电压下的局部放电特性。发现不同缺陷的谱图形状、放电的相位分布等表现出不同特点,每种缺陷的放电重复率与平均放电量均随着电压的升高而增大,其中气隙缺陷的最大放电量和放电重复率高于其他缺陷,电树枝缺陷的放电重复率最低。对不同缺陷的局部放电谱图进行了特征量提取,并利用基于L-M算法的BP神经网络,实现了故障类型的识别,最低识别率达到89.17%,取得了较好的识别效果。
    关键词:交联聚乙烯(XLPE) 电缆;附件;交流电压;绝缘缺陷;局部放电;故障识别
    中图分类号:TM247;TM855     文献标识码:A     文章编号:1007-3175(2020)06-0005-09
 
Partial Discharge Characteristics and Type Identification of Typical Insulation Defects of AC XLPE Cables
 
HE Ruo-bing1, CHEN Jia2, ZHU Jin-song1, YANG Xu2, YAO Yu-hang3, PAN Cheng3, TANG Ju3
(1 Guangdong Power Grid Co.,Ltd, Yangjiang Power Supply Company, Yangjiang 529500, China;
2 Wuhan Nari Limited Liability Company of State Grid Electric Power Research Institute, Wuhan 430074, China;
3 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
 
    Abstract: This paper aims at the nine types of insulation defects of AC XLPE cables and accessories, corresponding defect models were made, and the partial discharge characteristics of nine defects at different voltages were studied. It was found that the shape of the spectrum of different defects and the phase distribution of the discharge have different characteristics. The discharge repetition rate and average discharge of each defect increased with the increasing voltage. Among them, the maximum discharge amount and discharge repetition rate of insulation cavity defects were higher than other defects, and the discharge repetition rate of electrical tree defects was the lowest. Feature quantities were extracted from the partial discharge spectra of different defects, and the BP neural network based on the L-M algorithm was used to realize the fault type identification. The minimum recognition rate was 89.17%, and a good recognition effect was achieved.
    Key words: XLPE cable; accessories; AC voltage; insulation defects; partial discharge; fault identification
 
参考文献
[1] 郭然. 考虑运行风险的输电电缆外护层绝缘缺陷检修策略的研究[D]. 广州:华南理工大学,2017.
[2] 龙红星. 基于振荡波局部放电检测的电缆缺陷类型识别研究[D]. 广州:华南理工大学,2017.
[3] 林文钊. 基于振荡波局部放电检测的电力电缆缺陷定位研究[D]. 广州:华南理工大学,2016.
[4] SWLTZER-GRANT M, SIEW W H, CORR E, et al. Laboratory and field partial discharge measurement in HVDC power cables[C]/ / Proceedings of the 9th International Conference on Insulated Power Cables(Jicable),2015.
[5] 李晓华,吴广宁,张血琴,等. 典型缺陷的直流局部放电波形测量与特性分析[J]. 高电压技术,2007,33(8):31-34.
[6] NIEMEYER L.Ageneralized approach to partial discharge modeling[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1995,2(4):510-528.
[7] 杨丰源,许永鹏,郑新龙,等. 基于压缩感知的高压直流电缆局部放电模式识别[J]. 高电压技术,2017,43(2):446-452.
[8] 杨孝华. 交联聚乙烯电力电缆局部放电模式识别的研究[D]. 重庆:重庆大学,2002.
[9] 沈剑波,雷相东,李玉堂,等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报( 自然科学版),2018,42(2):147-154.
[10] 朱劲夫, 刘明哲, 赵成强, 等. 正则化在逻辑回归与神经网络中的应用研究[J]. 信息技术,2016(7):1-5.
[11] 王洪,牛晓灵. 基于l2正则化回声状态网络的模拟电路故障诊断[J]. 电子器件,2017,40(5):1283-1286.