基于直流扰动功率的直流配电网电压暂降源定位
鲁涛1,吕干云1,贾德香2,王程2,徐晓东1
(1 南京工程学院 电力工程学院,江苏 南京 211167;2 国网能源研究院有限公司,北京 102209)
摘 要:电压暂降源定位对解决相应供用电双方纠纷及责任认定等起到重要作用。提出一种基于直流扰动功率法的直流配电网电压暂降源定位方法,分析了导致直流配电网电压暂降的典型原因,将故障状态分解为正常状态和扰动状态的叠加,建立直流扰动功率与扰动源位置之间的对应关系,根据直流扰动功率的正负来判断暂降源的位置。在Simulink平台上搭建了直流配电网暂降分析仿真模型,分别对直流配电网的外部交流电网故障与内部故障引起的电压暂降进行源定位分析。仿真实验结果表明,该方法可有效完成直流配电网电压暂降源的定位,具有应用范围较广、可靠性高的优点。
关键词:直流配电网;电压暂降源定位;直流扰动功率
中图分类号:TM711 文献标识码:A 文章编号:1007-3175(2020)06-0001-04
Voltage Sag Source Location of DC Distribution Network Based on DC Disturbance Power
LU Tao1, LYU Gan-yun1, JIA De-xiang2, WANG Cheng2, XU Xiao-dong1
(1 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 2111 67, China;
2 State Grid Energy Research Institute Co., Ltd, Beijing 102209, China)
Abstract: The location of voltage sag source plays an important role in solving the disputes and identifying responsibility between two power supply companies. In this paper, a method for locating source of voltage sag in DC distribution network based on DC disturbance power is provided; the typical causes of the voltage sag in the DC distribution network are analyzed, and the fault state is decomposed into the superposition of the normal state and the disturbance state, and establish the correspondence between the DC disturbance power and the location of the disturbance source, and determine the location of the sag source according to the positive and negative of the DC disturbance power. A DC distribution network sag analysis simulation model was built on Simulink to analyze the source locating caused by the external AC grid fault and internal fault caused by the internal distribution network. Simulation results show that the proposed method can accomplish locates the sag source from upstream or downstream.
Key words: DC distribution network; voltage sag source location; DC disturbing power
参考文献
[1] 孙鹏飞,贺春光,邵华,等. 直流配电网研究现状与发展[J]. 电力自动化设备,2016,36(6):64-73.
[2] 史清芳,徐习东,赵宇明. 电力电子设备对直流配电网可靠性影响[J]. 电网技术,2016,40(3):725-732.
[3] BARAN M E, MAHAJAN N R.DC distribution for industrial systems: Opportunities and challenges[J].IEEE Transactions on Industry Applications,2003,39(6):1596-1601.
[4] KAKIGANO H, MIURA Y, ISE T.Low-voltage bipolar-type DC microgrid for super high quality distribution[J].IEEE Transactions on Power Electronics,2010,25(12):3066-3075.
[5] 金一丁,宋强,刘文华. 基于公共直流母线的链式可拓展电池储能系统及控制[J]. 电力系统自动化,2010,34(15):66-70.
[6] PARSONS A C, GRADY W M, POWERS E J, et al. A direction finder for power quality disturbances based upon disturbance power and energy[J].IEEE Transactions on Power Delivery,2000,15(3):1081-1086.
[7] TAYJASANANT T, LI Chun, XU W.A resistance sign-based method for voltage sag source detection[J].IEEE Transactions on Power Delivery,2005,20(4):2544-2551.
[8] HAMZAH N, MOHAMED A, HUSSAIN A.A new approach to locate the voltage sag source using real current component[J].Electric Power Systems Research,2004,72(2):113-123.
[9] 吕干云,孙维蒙,汪晓东,等. 电力系统电压暂降源定位方法综述[J]. 电力系统保护与控制,2010,38(23):241-245.
[10] 徐铭铭,肖立业,林良真. 直流配电网单极接地故障定位方法[J]. 电工电能新技术,2015,34(11):55-62.
[11] 徐铭铭,肖立业,王海风,等. 一种基于Prony算法的直流配电网电缆故障定位方法[J]. 电工电能新技术,2015,34(4):1-5.
[12] 和敬涵,张明,罗国敏,等. 一种利用故障暂态过程的柔性直流配电网故障测距方法[J]. 电网技术,2017,41(3):985-992.
[13] 廖建权,周念成,王强钢,等. 直流配电网电能质量指标定义及关联性分析[J]. 中国电机工程学报,2018,38(23):6847-6860.