超高压线路绝缘架空地线感应电压及其影响因素研究
李奇超,伍弘,杨凯,房子祎
(国网宁夏电力有限公司电力科学研究院,宁夏 银川 750011)
摘 要:针对超高压输电线路绝缘架空地线上可能产生过大的感应电压问题,以330 kV线路为例,采用有限元分析软件对不同运行及检修工况下绝缘架空地线上产生的感应电压进行仿真,并根据仿真结果设计了一种专用于绝缘架空地线的新型接地装置。经现场应用验证表明,导、地线间距及导线排列方式、相序( 同塔双回线路) 等是影响绝缘架空地线感应电压大小的重要因素,且在线路不同工况下,绝缘架空地线上均可能产生较大感应电压;所设计的接地装置能在避免检修人员电弧伤害的同时将绝缘架空地线可靠限制在地电位。
关键词:高电压技术;绝缘架空地线;有限元仿真;感应电压;接地装置
中图分类号:TM755;TM862 文献标识码:A 文章编号:1007-3175(2020)08-0017-05
Research on the Induced Voltage and Its Influencing Factors of Insulated Overhead Ground Wire for EHV Transmission Line
LI Qi-chao, WU Hong, YANG Kai, FANG Zi-yi
(State Grid Ningxia Electric Power Company Electric Power Research Institute, Yinchuan 750011 , China)
Abstract: Aiming at the problem of excessive induced voltage on insulated overhead ground wires of UHV transmission lines, in this paper, it takes 330 kV line as an example, and uses finite element analysis software to simulate and analyze the induced voltage generated on insulated overhead ground wires under different operating and maintenance working conditions, and devised a new kind of grounding device dedicated to the insulated overhead ground wires according to the simulation results. The results show that the distance between the conductor line and ground wire, the arrangement of the lines and the phase sequence (common-tower double-circuit line) are important factors that affecting the magnitude of the induced voltage of insulated overhead ground wires. The devised grounding device can reliably limit the insulated overhead ground wire to ground potential while avoiding the arc injury of maintenance personnel.
Key words: high voltage technique; insulated overhead ground wire; finite element simulation; induced voltage; grounding device
参考文献
[1] 黄鉴. 西北电网750 kV电压等级的合理确定[J].宁夏电力,2003(1):1-5.
[2] 中国电力企业联合会. 交流输电线路架空地线接地技术导则:DL/T 1519—2016[S]. 北京:中国电力出版社,2016:2-6.
[3] 徐明,赵俊霖,伍家洁. 架空地线电磁感应电流计算与仿真分析[J]. 西南师范大学学报(自然科学版),2019,44(10):49-53.
[4] LUO Yihua, REN Hongxin, HAN Qingjiang, et al. Analysis of Induced Voltage of Parallel UHV Double-circuit AC Transmission Lines[J]. IOP Conference Series Materials Science and Engineering,2018,452(3):032084.
[5] 胡科,陈国初.500 kV架空地线不同导线排列方式和损耗[J]. 上海电机学院学报,2018,21(1):33-38.
[6] DUDURYCH I, ROSOLOWSKI E. Analysis of overvoltages in overhead ground wires of extra high voltage(EHV) power transmission line under single-phase-to-ground faults[J]. Electric Power Systems Research,2000,53(2):105-111.
[7] 马爱清,袁雪元. 降低地线感应电压方法及绝缘间隙电压分析[J]. 电瓷避雷器,2018(2):48-53.
[8] 马烨,龚坚刚,郭洁,等.500 kV架空地线不同接地方式感应电量的比较[J]. 高压电器,2016,52(5):176-180.
[9] 陈洁,郭洁,崔龙跃,等.330 kV OPGW感应电压分布计算和影响因素研究[J]. 高压电器,2014,50(5):93-98.
[10] 李燕军,孟令增,王东育,等.750 kV双回输电线路架空地线接地方式分析研究[J]. 电气技术,2015(5):82-84.
[11] 王倩,吴田,施荣,等.750 kV输电线路光纤复合架空地线的接地方式[J]. 高电压技术,2011,37(5):1274-1280.
[12] 李刚,胡元潮,刘斌,等. 不同接地方式下地线电位分布与损耗分析[J]. 山东理工大学学报(自然科学版),2019,33(2):17-23.
[13] 国家电网公司安全监察质量部. 电力安全工作规程线路部分:Q/GDW 1799.2—2013[S]. 北京:中国电力出版社,2014:27-28.
[14] 李宝聚,周浩.1 000 kV同塔双回线路感应电压和电流的计算分析[J]. 电网技术,2011,35(3):14-19.
[15] 祝永坤,杨永保,陈晶,等.500 kV输电线路绝缘架空地线并联间隙放电原因分析及防范措施[J].内蒙古电力技术,2018,36(3):29-32.
[16] 彭向阳,毛先胤,胡卫,等. 输电线路架空地线节能接地技术[J]. 电力建设,2014,35(8):84-90.