Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval


首页 >> 文章检索 >> 最新索引


来源:电工电气发布时间:2020-09-18 15:18 浏览次数:52
(1 上海电力大学 自动化工程学院,上海 200082;2 上海合时智能科技有限公司,上海 201100)
    摘 要:针对使用无人机进行绝缘子识别实时性的要求,以感受野模块(RFB)网络为基础,提出了一种基于RFB模型改进的轻量型架构。使用MobileNetV3网络作为特征提取主干,设计了新的感受野模块RFB-X,并使用Focal-loss损失函数解决正负样本不平衡问题。实验结果表明,该模型提高了绝缘子的检测速度和准确率。
    中图分类号:TM216     文献标识码:A     文章编号:1007-3175(2020)09-0019-04
Real Time Detection of Insulator by RFB
JI Zhi-peng1, ZHANG Guo-wei1, LU Qiu-hong2
(1 School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200082, China;
2 Shanghai Heshi Intelligent Technology Co., Ltd, Shanghai 2011 00, China)
    Abstract: In response to the real-time requirements of using UAVs for insulator identification, based on the receptive field module (RFB) network, a lightweight architecture based on the improvement of the RFB model is proposed. Firstly, mobile MobileNetV3 is used as the main feature extraction module, then a new receptive field module RFB-X is designed, and finally the Focal-loss function is used to solve the imbalance of positive and negative samples. Experiments show that the model improves the speed and accuracy of insulator detection.
    Key words: lightweight model; RFB; UAV; insulator detection; real time
[1] 吴涛,王伟斌,于力,等. 轻量级YOLOV3 的绝缘子缺陷检测方法[J]. 计算机工程,2019,45(8):275-280.
[2] 张焕坤,李军毅,张斌. 基于改进型YOLO v3 的绝缘子异物检测方法[J]. 中国电力,2020,53(2):49-55.
[3] REDMON J, FARHADI A.YOLOv3:An Incremental Improvement[EB/OL].(2018-04-08)[2020-05-25].
[4] HOWARD A, ZHU M, CHEN B, et al.MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17) [2020-05-25].
[5] 陈俊杰,叶东华,产焰萍,等. 基于Faster R-CNN 模型的绝缘子故障检测[J]. 电工电气,2020(4):56-60.
[6] REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[C]//Neural Information Processing Systems,2015:91-99.
[7] 李伟性,郑武略,王宁,等. 基于S S D 算法的输电线路上绝缘子缺陷检测方法研究[J]. 仪器仪表用户,2019,26(8):1-4.
[8] LIU S, HUANG D, WANG Y, et al.Receptive Field Block Net for Accurate and Fast Object Detection[C]//European Conference on Computer Vision,2018:404-419.
[9] HOWARD A, SANDLER M, CHU G, et al.Searching for MobileNetV3[EB/OL].(2019-11-20)[2020-05-25].https: //
[10] LIN T, GOYAL P, GIRSHICK R, et al.Focal Loss for Dense Object Detection[C]//International Conference on Computer Vision,2017:2999-3007.
[11] SANDLER M, HOWARD A, ZHU M, et al.MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//Computer Vision and Pattern Recognition,2018:4510-4520.
[12] ZHANG X, ZHOU X, LIN M, et al.ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices[C]//Computer Vision and Pattern Recognition,2018:6848-6856.
[13] MA N, ZHANG X, ZHENG H, et al.ShuffleNetV2: Practical Guidelines for Efficient CNN Architecture Design[C]//European Conference on Computer Vision,2018:122-138.
[14] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[15] QIN Z, LI Z, ZHANG Z, et al.ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices[C]//International Conference on Computer Vision,2019:6717-6726.
[16] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]//National Conference on Artificial Intelligence,2016:4278-4284.
[17] CHOLLET F.Xception: Deep Learning with Depthwise Separable Convolutions[C]//Computer Vision and Pattern Recognition,2017:1800-1807.
[18] LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single Shot MultiBox Detector[C]//European Conference on Computer Vision,2016:21-37.
[19] SHRIVASTAVA A, GUPTA A, GIRSHICK R, et al. Training Region-Based Object Detectors with Online Hard Example Mining[C]//Computer Vision and Pattern Recognition,2016:761-769.