电磁继电器剩余电寿命智能预测研究
乔维德
(无锡开放大学 科研与质量控制处,江苏 无锡 214011)
摘 要:针对以往继电器剩余电寿命实际预测方法存在的不足,建立一种用于电磁继电器剩余电寿命预测的BP神经网络模型,该模型采取继电器的吸合时间和超程时间作为输入量,继电器剩余电寿命作为输出量,通过粒子群- 蛙跳算法优化网络结构初始参数,利用改进BP算法训练BP神经网络,并加以测试验证。实验结果表明,经过粒子群- 蛙跳算法优化的BP神经网络模型能快速、准确地实现电磁继电器剩余电寿命预测。
关键词:电磁继电器;BP神经网络;粒子群- 蛙跳算法;剩余电寿命预测
中图分类号:TM581.3 文献标识码:A 文章编号:1007-3175(2020)12-0030-05
Research on Intelligent Prediction of Residual Electrical Life of Electromagnetic Relay
QIAO Wei-de
(Scientific Research and Quality Control Department, Wuxi Open University, Wuxi 214011, China)
Abstract: Aiming at the shortcomings of the previous actual prediction methods of the remaining electrical life of the relay, a BP neural network model for the prediction of the remaining electrical life of the electromagnetic relay was established. The model takes the pull-in time and overtravel time of the relay as the input, and the remaining electrical life of the relay as the output. The initial parameters of the network structure are optimized by the particle swarm-frog leaping algorithm, and the BP neural network is trained by the improved BP algorithm, and tested and verified. Experimental results show that the BP neural network model optimized by the particle swarm-frog leaping algorithm can quickly and accurately predict the remaining electrical life of the electromagnetic relay.
Key words: electromagnetic relay; BP neural network; particle swarm-frog leaping algorithm; residual electrical life prediction
参考文献
[1] 王佳炜,王召斌,黄周霖. 继电器寿命预测方法综述[J]. 电器与能效管理技术,2018(4):1-5.
[2] 王佳炜,王召斌,黄周霖. 果蝇算法优化的BP神经网络在电磁继电器贮存寿命预测中的应用[J].电器与能效管理技术,2019(2):19-24.
[3] 苗建伟,王文军,李斌. 低压继电器寿命的智能预测分析[J]. 电器与能效管理技术,2018(4):61-65.
[4] 乔维德. 基于BP神经网络的机电产品绿色度评价方法[J]. 温州职业技术学院学报,2017,17(2):33-37.
[5] 张菲菲,李志刚. 基于BP神经网络的继电器剩余寿命预测[J]. 低压电器,2012(1):11-14.
[6] 乔维德. 粒子群蛙跳模糊神经网络的PMSM转速控制器设计[J]. 微特电机,2019,47(3):66-69.
[7] 乔维德. 基于AHP和BP神经网络的翻转课堂教学质量评价模型[J]. 温州职业技术学院学报,2018,18(4):57-64.
[8] 乔维德. 基于BP神经网络模型的压力传感器温度补偿[J]. 淮阴师范学院学报( 自然科学版),2019,18(4):322-327.
[9] 乔维德. 高职院校科研绩效评价模型研究[J]. 高等职业教育探索,2020,19(2):24-29.