Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于NBA-SVR的日最大负荷预测

来源:电工电气发布时间:2021-01-25 08:25 浏览次数:825

基于NBA-SVR的日最大负荷预测

成贵学1,陈昱吉1,赵晋斌2,费敏锐3
(1 上海电力大学 计算机科学与技术学院,上海 200090;2 上海电力大学 电气工程学院,上海 200090;
3 上海大学 机电工程与自动化学院,上海 200072)
 
摘 要:为进一步提高日最大负荷预测精度,提出一种基于新型蝙蝠算法和支持向量回归的日最大负荷预测方法,引入对回波中多普勒效应进行自适应补偿和栖息地选择的新型蝙蝠算法优化选取支持向量回归参数,采用电工杯数学建模竞赛提供的数据训练并建立NBA-SVR模型进行日最大负荷预测,结果表明NBA-SVR 模型在预测精度上比BPNN、PSO-SVR、WOA-SVR模型有显著的提升。
    关键词:日最大负荷预测;新型蝙蝠算法;支持向量回归;参数优化
    中图分类号:TM715;TP181     文献标识码:A     文章编号:1007-3175(2021)01-0011-06
 
Daily Maximum Load Forecasting Based on NBA-SVR
 
CHENG Gui-xue1, CHEN Yu-ji1, ZHAO Jin-bin2, FEI Min-rui3
(1 School of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 200090, China;
2 School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
3 School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200072, China)
 
   Abstract: In order to further improve the accuracy of daily maximum load forecasting, this paper proposed a new daily maximum load forecasting method based on novel bat algorithm optimization and support vector regression. It introduced the adaptive compensation of Doppler effect in the echo and new bat algorithm for habitat selection to optimize the selection of support vector regression parameters. The data provided by the Electrician Mathematical Contest in Modeling are used to train and establish the NBA-SVR model to perform daily maximum load forecasting. The results showed that the NBA-SVR model has better prediction accuracy than the back propagation neural network, PSO-SVR, and WOA-SVR.
    Key words: daily maximum load forecasting; novel bat algorithm; support vector regression; parameters optimization
 
参考文献
[1] 康重庆,夏清,刘梅,等. 电力系统负荷预测[M].2版. 北京:中国电力出版社,2017.
[2] 马立新,李渊. 日最大负荷特性分析及预测方法[J].电力系统及其自动化学报,2014,26(10):31-34.
[3] 刘晓娟,方建安. 基于双修正因子的模糊时间序列日最大负荷预测[J] . 中国电力,2013,46(10):115-118.
[4] 崔和瑞,彭旭. 基于ARIMA 模型的夏季短期电力负荷预测[J]. 电力系统保护与控制,2015,43(4):108-114.
[5] 任海军,张晓星,肖波,等. 基于概念格的神经网络日最大负荷预测输入参数选择[J] . 吉林大学学报( 理学版),2011,49(1):87-92.
[6] 嵇灵,牛东晓,吴焕苗. 基于贝叶斯框架和回声状态网络的日最大负荷预测研究[J] . 电网技术,2012,36(11):82-86.
[7] 李笋,王超,张桂林,等. 基于支持向量回归的短期负荷预测[J] . 山东大学学报( 工学版),2017,47(6):52-56.
[8] 李素,袁志高,王聪,等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报,2018,13(1):70-84.
[9] JIE Z, SIYUAN W.Thermal load forecasting basedon PSO - SVR [C] / /2018 IEEE 4th International Conference on Computer and Communications(ICCC),2018:2676-2680.
[10] TAO Y, YAN H, GAO H, et al. Application of SVR optimized by modified simulated annealing(MSA-SVR) air conditioning load prediction model[J]. Journal of Industrial Information Integration,2019,15:247-251.
[11] 宫毓斌,滕欢. 基于GOA-SVM 的短期负荷预测[J].电测与仪表,2019,56(14):12-16.
[12] 王建国,张文兴. 支持向量机建模及其智能优化[M]. 北京:清华大学出版社,2015.
[13] MENG X B, GAO X Z, LIU Yu, et al. A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization[J].Expert Systems with Applications,2015,42(17/18):6350-6364.
[14] 王文锦,戚佳金,王文婷,等. 基于人工蜂群优化极限学习机的短期负荷预测[J] . 电测与仪表,2017,54(11):32-35.
[15] SAKURAI D, FUKUYAMA Y, IIZAKA T, et al. Daily peak load forecasting by artificial neural network using differential evolutionary particle swarm optimization considering outliers[J]. IFAC PapersOnLine,2019,52(4):389-394.
[16] 王亚琴,王耀力,王力波,等. 一种改进果蝇算法优化神经网络短期负荷预测模型[J] . 电测与仪表,2018,55(22):13-18.