Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于EEMD和Prony方法的次同步振荡分析

来源:电工电气发布时间:2021-03-26 14:26 浏览次数:12
基于EEMD和Prony方法的次同步振荡分析
 
马晓腾1,顾煜炯1,杨晓峰2
(1 华北电力大学 能源动力与机械工程学院,北京 102206;2 中国华能集团清洁能源技术研究院有限公司,北京 102209)
 
    摘 要:Prony是电力系统振荡分析中常用的一种方法,但其对噪声数据异常敏感,针对这一问题,提出基于集合经验模态分解(EEMD)与Prony的联合分析方法用于分析电力系统次同步振荡问题。利用EEMD对含噪声信号进行分解,去除其中的高频噪声分量,同时有效解决经验模态分解(EMD)去噪时的模态混频问题,得到平稳信号后利用Prony可准确识别次同步振荡的特征参数,将该联合分析方法用于某300 MW汽轮发电机组的次同步振荡分析中,验证了其抗噪性强和准确度高的优点。
    关键词:次同步振荡;Prony方法;噪声;集合经验模态分解;汽轮发电机组
    中图分类号:TM311     文献标识码:A     文章编号:1007-3175(2021)03-0020-05
 
Subsynchronous Oscillation Analysis Based on Ensemble Empirical Mode Decomposition and Prony Method
 
MA Xiao-teng1, GU Yu-jiong1, YANG Xiao-feng2
(1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;
2 China Huaneng Group Clean Energy Research Institute, Beijing 102209, China)
 
    Abstract: Prony method is used commonly in power system oscillation analysis, but it abnormally sensitive to noise data. A method based on ensemble empirical mode decomposition(EEMD) and Prony is proposed to solve this problem and is used to analyze subsynchronous oscillation of power system. Use EEMD to decompose the noisy signal, remove the high-frequency noise component, and effectively solve the modal mixing problem in empirical mode decomposition(EMD) denoising; after obtaining the stable signal, Prony can accurately identify the characteristic parameters of the subsynchronous oscillation. The joint analysis method is used in the subsynchronous oscillation analysis of a 300 MW steam turbine generator unit, which verifies the advantages of strong noise resistance and high accuracy.
    Key words: subsynchronous oscillation; Prony method; noise; ensemble empirical mode decomposition; steam turbine generator
 
参考文献
[1] 金铁铮,顾煜炯. 次同步振荡下轴系扭振疲劳寿命损耗在线分析方法[J]. 热力发电,2016,45(6) :100-105.
[2] 杨昆,赵鹏程,顾煜炯,等. 汽轮机扭振作用下叶片响应及应力计算[J]. 动力工程学报,2018,38(3) :193-197.
[3] WEN H, GUO S Y, TENG Z S, et al.Frequency Estimation of Distorted and Noisy Signals in Power Systems by FFT-Based Approach[J].IEEE Transactions on Power Systems,2014,29(2) :765-774.
[4] 马建伟,竺炜,曾喆昭,等. FFT结合神经网络的低频振荡主导模式识别[J]. 电力科学与技术学报,2011,26(4) :88-93.
[5] 李天云,高磊,赵妍. 基于HHT的电力系统低频振荡分析[J]. 中国电机工程学报,2006,26(14) :24-30.
[6] 胡昊明,郑伟,徐伟,等. Prony和HHT算法在低频振荡在线辨识中的适用性比较[J]. 电力系统保护与控制,2013,41(14) :33-40.
[7] 邓集祥,欧小高,姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报,2009,24(8) :141-146.
[8] 沈杨,戴本祁,张惠东. 基于小波和扩展Prony算法的电压闪变检测新方法[J]. 电力系统保护与控制,2010,38(10) :43-47.
[9] 伍凌云,李兴源,杨煜,等. 基于Prony 辨识的次同步阻尼控制器研究[J]. 电力自动化设备,2007,27(9) :12-17.
[10] 郑蕤,肖湘宁,李伟,等. 复杂交直流系统次同步振荡模态辨识及仿真验证[J]. 高电压技术,2010,36(12) :3035-3040.
[11] 郭成,李群湛. Prony算法辨识传递函数的模型阶数选取研究[J]. 系统仿真学报,2009,21(22) :7042-7044.
[12] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A :Mathematical, Physical and Engineering Sciences,1998(454) :903-995.
[13] FLANDRIN P, RILLING G, GONCALVES P.Empirical mode decomposition as a filter bank[J].IEEE Signal Processing Letters,2004,11(2) :112-114.
[14] RILLING G, FLANDRIN P, GONCALVES P.Empirical mode decomposition, fractional Gaussian noise and Hurst exponent estimation[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.
[15] BARNHART B L, EICHINGER W E.Empirical Mode Decomposition applied to solar irradiance, global temperature, sunspot number, and CO2 concentration data[J].Journal of Atmospheric and Solar- Terrestrial Physics,2011,73(13) :1771-1779.