Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于切换通信网络下孤岛型微电网二次控制策略

来源:电工电气发布时间:2021-03-26 14:26 浏览次数:14
基于切换通信网络下孤岛型微电网二次控制策略
 
李泓锋,魏德仙
(华南农业大学 工程学院,广东 广州 510642)
 
    摘 要:孤岛型微电网的内部电力单元通过无线网络进行通信,无线通信网络易受扰动并且存在链路失效问题,导致通信拓扑不断变化,使得电力单元控制信号更新失败。为了消除下垂控制导致的电压与频率偏差,针对存在通信网络切换的孤岛电网,提出在切换拓扑下孤岛型微电网的分布式二次控制策略。该策略是在下垂控制的基础上增加切换拓扑的情况以实现二次调节,并且形式简单,可用构造简单的硬件来实现。在提出的二次控制作用下可以使频率和电压以指数的速度收敛至期望值,保证了有功功率分配性能。利用Matlab/Simulink仿真验证了该二次控制策略的有效性和可行性。
    关键词:孤岛型微电网;二次控制;分布式控制;切换拓扑
    中图分类号:TM734     文献标识码:A     文章编号:1007-3175(2021)03-0001-07
 
Secondary Control Strategy of Islanded Micro-Grids Based on Switching Communication Network
 
LI Hong-feng, WEI De-xian
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
 
    Abstract: The internal power unit of the island micro-grid communicates through a wireless network, and the wireless communication network is susceptible to disturbances and has link failure problems, which leads to continuous changes in the communication topology and makes the power unit control signal update failure. In order to eliminate voltage and frequency deviations caused by droop control, a distributed secondary control strategy under switching topology is proposed for islanded micro-grids with communication network switching. The strategy is to increase the switching topology on the basis of droop control to achieve secondary adjustment, and the form is simple, and it can be implemented with simple hardware. Under the action of the proposed secondary control, the frequency and voltage can converge to the expected value at an exponential speed, which ensures the performance of active power distribution. This article uses Matlab/Simulink simulation to verify the effectiveness and feasibility of the secondary control strategy.
    Key words: islanded micro-grid; secondary control; distributed control; switching topology
 
参考文献
[1] 王成山,武震,李鹏. 微电网关键技术研究[J].电工技术学报,2014,29(2) :1-12.
[2] 杨新法,苏剑,吕志鹏,等. 微电网技术综述[J].中国电机工程学报,2014,34(1) :57-70.
[3] 周孝信. 构建新一代能源系统的设想[J]. 陕西电力,2015,43(9) :1-4.
[4] PALIZBAN O, KAUHANIEMI K.Hierarchical control structure in microgrids with distributed generation:Island and grid-connected mode[J].Renewable Sustainable Energy Reviews,2015,44(1) :797-813.
[5] GUERRERO J M, VASQUEZ J C, MATAS J, et al. Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization[J].IEEE Transactions on Industrial Electronics,2011,58(1) :158-172.
[6] VANDOORN T L, DE KOONING J D M, MEERSMAN B, et al.Review of primary control strategies for islanded microgrids with power-electronic interfaces[J].Renewable and Sustainable Energy Reviews,2013,19(1) :613-628.
[7] 吕振宇,苏晨,吴在军,等. 孤岛型微电网分布式二次调节策略及通信拓扑优化[J]. 电工技术学报,2017,32(6) :209-219.
[8] RAGHAMI A, AMELI M T, HAMZEH M.Primary and secondary frequency control in an autonomous microgrid supported by a load-shedding strategy[C]//4th Annual Power Electronics, Drive Systems and Technologies Conference,2013.
[9] SAVAGHEBI M, GUERRERO J M, JALILIAN A, et al. Secondary control for voltage unbalance compensation in an islanded microgrid[C]//2011 IEEE International Conference on Smart Grid Communications,2011.
[10] GUO F, WEN C.Distributed control subject to constraints on control inputs:A case study on secondary control of droop-controlled inverterbased microgrids[C]//2014 9th IEEE Conference on Industrial Electronics and Applications,2014.
[11] BIDRAM A, DAVOUDI A, LEWIS F L, et al. Distributed cooperative secondary control of microgrids using feedback linearization[J]. IEEE Transactions on Power System,2013,28(3) :3462-3470.
[12] DRAGICEVIC T, GUERRERO J M, VASQUEZ J C, et al.Supervisory control of an adaptivedroop regulated DC microgrid with battery management capability[J].IEEE Transactions on Industrial Electronics,2014,29(2) :695-706.
[13] XIN H, QU Z, SEUSS J, et al.A self-organizing strategy for power flow control of photovoltaic generators in a distribution network[J].IEEE Transactions on Power Systems,2011,26(3) :1462-1473.
[14] KATIRAEI F, IRAVANI M R.Power management strategies for a microgrid with multiple distributed generation units[J].IEEE Transactions on Power Systems,2006,21(4) :1821-1831.
[15] SIMPSON-PORCO J W, DORFLER F, BULLO F. Sychronization and power sharing for droopcontrolled inverters in islanded microgrids[J]. Automatica,2013,49(9) :2603-2611.
[16] 魏春,徐鉴其,陆海强,等. 一种基于离散时间交互的改进直流微电网控制策略[J]. 电力系统自动化,2020,44(3) :49-55.
[17] 沈珺,柳伟,李虎成,等. 基于强化学习的多微电网分布式二次优化控制[J]. 电力系统自动化,2020,44(5) :198-206.
[18] 李得民,吴在军,赵波,等. 基于模型预测控制的孤岛微电网二次调节策略[J]. 电力系统自动化,2019,43(10) :60-67.
[19] 杨秋霞,袁冬梅,郭小强,等. CPS概念下基于事件触发且考虑通信丢包及扰动的微网分层控制策略[J]. 电工技术学报,2019,34(15) :3209-3221.
[20] 马良,许刚. DoS攻击下基于自触发一致性的微电网电压无功控制[J]. 计算机工程,2020,46(9) :298-305.
[21] 陈刚,李志勇,韦梦立. 孤岛微电网的分布式固定时间二次协调控制[J]. 控制与决策,2019,34(1) :205-212.
[22] WANG Xinsheng, ZHANG Huaqiang, LI Changxi. Distributed finite-time cooperative control of droop-controlled microgrids under switching topology[J].IET Renewable Power Generation,2017,11(5) :707-714.
[23] 张文浩,钱瞳,连祥龙,等. 基于集中式与分布式的信息物理融合微电网电压频率二次恢复控制仿真研究[J]. 全球能源互联网,2019,2(5) :476-483.
[24] BIDRAM A, DAVOUDI A, LEWIS F L, et al. Secondary control of microgrids based on distributed cooperative control of multi-agent systems[J].IET Generation, Transmission & Distribution,2013,7(8) :822-831.
[25] BIDRAM A, LEWIS F L, DAVOUDI A, et al. Frequency control of electric power microgrids using distributed cooperative control of multiagent systems[C]//2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems,2013.
[26] SU Y, HUANG J.Cooperative Output Regulation with Application to Multi-Agent Consensus Under Switching Network[J].IEEE Transactions on Systems, Man, and Cybernetics—PartB: Cybernetics,2012,42(3) :864-875.
[27] HONG Yiguang, CHEN Guanrong, BUSHNELL L. Distributed observers design for leaderfollowing control of multi-agent networks[J]. Automatica,2008,44(3) :846-850.
[28] JADBABAIE A, LIN Jie, MORSE A S.Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].IEEE Transactions on Automatic Control,2003,48(6) :988-1001.