Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

一种改进SSD算法的输电线路目标检测方法

来源:电工电气发布时间:2021-06-28 09:28 浏览次数:671
一种改进SSD算法的输电线路目标检测方法
 
黄芹芹,董洁,陈玥,朱圆圆
(沈阳建筑大学 信息与控制工程学院,辽宁 沈阳 110168)
 
    摘 要 :电力巡检在输电线路部件故障的排除中起着至关重要的作用。为了实现复杂背景下的输电线路电力小部件的目标检测,提出了一种改进 SSD 算法的小目标检测算法——PA-SSD。将反卷积融合单元融合到 PANet 算法中,以改进 PANet 结构,并以此为基础产生新的特征融合方式,融合不同尺度的特征图 ;将传统 SSD 算法中的特征图用新的特征图替换,形成新的特征金字塔模型。针对实际输电线路中的 4 种目标进行了测试,结果表明,PA-SSD 算法与原始的 SSD 算法相比,其检测精度有了明显提高,检测速度也可以满足检测性能的要求。
    关键词 :目标检测 ;输电线路 ;SSD 算法 ;PANet 算法
    中图分类号 :TM726     文献标识码 :A     文章编号 :1007-3175(2021)06-0051-05
 
A Transmission Line Target Detection Method with
Improved SSD Algorithm
 
HUANG Qin-qin, DONG Jie, CHEN Yue, ZHU Yuan-yuan
(School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China)
 
    Abstract: It is of great importance for the power inspection to troubleshoot the transmission line components. In order to achieve target detection of small power components of transmission lines in complex contexts, this paper proposes a small target detection algorithm based on the improved SSD algorithm-PA-SSD. The deconvolution fusion unit is integrated into the PANet algorithm to improve the PANet structure, and on this basis, a new feature fusion method is generated to fuse feature images of different scales. The feature graph in the traditional SSD algorithm is replaced with a new feature graph to form a new feature pyramid model. The results show that compared with the original SSD algorithm, the detection accuracy of PA-SSD algorithm is significantly improved, and the detection speed can also meet the require ments of detection performance.
    Key words: target detection; transmission line; SSD algorithm; PANet algorithm
 
参考文献
[1] 邹栋 . 输电线路中关键部件图像识别及异常检测方法研究 [D]. 保定 :华北电力大学,2017.
[2] 徐俊良,曹建,杨凯斌 . 基于局部均值的绝缘子图像分割算法设计 [J] . 计算机工程,2016,42(9) :262-267.
[3] 赵君 . 基于航拍图像的杆塔类型判断及状态识别[D]. 保定 :华北电力大学,2010.
[4] 王丽娟 . 基于深度卷积神经网络的绝缘子故障检测算法研究 [D]. 天津 :天津工业大学,2018.
[5] LIU W, ANGUELOV D, ERHAN D, et al.SSD :Single Shot MultiBox Detector[C]//Lecture Notes in Computer Science,2016 :21-37.
[6] 于德明,沈建,汪骏,等 . 直升机在电网运行维护中的研究与应用 [J] . 电网技术,2009,33(6) :107-112.
[7] 史高峰,李小勇 .SSD 数据结构与算法综述 [J]. 微型电脑应用,2012,28(4) :56-61.
[8] LIN T Y, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection [C] / /2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017 :936-944.
[9] LIU S, QI L, QIN H, et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018 :8759-8768.
[10]SHELHAMER E , LONG J , DARRELL T . Fully convolytional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4) :640-651.