Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

粒子群与细菌觅食混合算法在光伏阵列MPPT中的应用

来源:电工电气发布时间:2021-06-28 10:28 浏览次数:644
粒子群与细菌觅食混合算法在光伏阵列MPPT中的应用
 
支昊,张建德,黄陈蓉,薛正爱
(南京工程学院 电力工程学院,江苏 南京 211167)
 
     摘 要 :为了提高光伏阵列光电转换效率,确保光伏阵列功率输出始终维持在最大功率点上,传统最大功率点跟踪算法在应用于局部阴影条件时,可能存在陷入局部最优或跟踪时间过长等问题。提出一种粒子群与细菌觅食混合算法,并将其应用于光伏阵列的最大功率点跟踪中,来改善跟踪过程中的收敛精度与速度。通过仿真实验结果,与传统扰动观察算法以及细菌觅食算法进行对比,验证了混合算法在跟踪速度、收敛精度、稳定性上的优越性,以及在动态光照条件下的适应性能力。
    关键词 :最大功率点跟踪 ;粒子群算法 ;细菌觅食算法 ;光伏阵列
    中图分类号 :TM615     文献标识码 :A     文章编号 :1007-3175(2021)06-0014-06
 
Application of Hybrid Algorithm of Particle Swarm Optimization and
Bacterial Foraging in MPPT of Photovoltaic System
 
ZHI Hao, ZHANG Jian-de, HUANG Chen-rong, XUE Zheng-ai
(School of Electrical Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
 
    Abstract: In order to improve the photoelectric conversion efficiency of the photovoltaic array and ensure the power output of the photovoltaic array is always maintained at the maximum power point, when the traditional maximum power point tracking algorithm is applied to partial shadow conditions, there may be problems such as falling into the local optimum or longer tracking time. The hybrid algorithm of particle swarm optimization and bacterial foraging is proposed and applied to the maximum power point tracking of photovoltaic array to improve the convergence accuracy and speed in the tracking process. Compared with traditional disturbance observation algorithm and bacterial foraging algorithm, it is verified that this hybrid algorithm is better in tracking speed, convergence accuracy, stability and adaptability under dynamic lighting conditions.
    Key words: maximum power point tracking; particle swarm optimization algorithm; bacterial foraging optimization algorithm; photovoltaic array
 
参考文献
[1] 国家能源局 . 太阳能发展“十三五”规划 [J] . 太阳能,2016(12) :5-14.
[2] 潘文峰,陆晨,王加鸿,谢英豪,裘幼梓 . 晶体硅光伏组件的热斑效应详解 [J] . 太阳能,2019(1) :48-52.
[3] 业睿 . 光伏热斑效应及光伏阵列输出特性的仿真分析 [J]. 电子测试,2014(4) :35-38.
[4] 邱革非,张春刚,仲泽坤,杨晓龙,字杨 . 基于扰动观察法和电导增量法的光伏发电系统 MPPT 算法研究综述 [J]. 中国电力,2017,50(3) :154-160.
[5] 赵帅旗,肖辉,刘忠兵,朱梓嘉,张万 . 基于 BSO 的局部阴影下光伏最大功率点追踪 [J] . 电力系统及其自动化学报,2020,32(6) :74-79.
[6] 翟小军,杜蘅,刘建义,马大中,张晨光 . 粒子群算法与电导增量法的双级最大功率点跟踪控制 [J].红外与激光工程,2016,45(6) :190-195.
[7] 马运亮,高梅峰,周超超 . 基于粒子群算法的光伏 MPPT 控制策略研究 [J] . 制造业自动化,2015,37(13) :52-54.
[8] 聂晓华,赖家俊 . 复杂应用环境下粒子群光伏 MPPT 控制方法 [J] . 电力电子技术,2016,50(1) :37-40.
[9] 吴登盛,王立地,刘通,孟晓芳 . 基于神经网络的光伏阵列多峰 MPPT 的研究 [J] . 电测与仪表,2019,56(7) :69-74.
[10]李帅,毕大强,任先文 . 基于 BP 神经网络的复杂光照条件下光伏列阵 MPPT 控制研究 [J]. 电气开关,2016,54(6) :66-71.
[11]陈年,王宏华,韩伟 . 基于 GA-BP 神经网络的光伏阵列 MPPT 研究 [J] . 电测与仪表,2014,51(2) :40-44.
[12]孙航,肖海伟,李晓辉,李星,杜海江 . 光伏电池模型综述 [J]. 电源技术,2016,40(3) :743-745.
[13]杨元培,杨奕,王建山,张桂红 . 光伏发电系统电池最大功率跟踪控制仿真 [J] . 计算机仿真,2018,35(6) :116-121.
[14]戚军,张晓峰,张有兵,周文委 . 考虑阴影影响的光伏阵列仿真算法研究 [J]. 中国电机工程学报,2012,32(32) :131-138.
[15]KENNEDY J , EBERHART R . Particle Swarm Optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks,1995.
[16]WU Xinghua.A density adjustment based particle swarm optimization learning algorithm for neural network design[C]//2011 International Conference on Electrical and Control Engineering (ICECE),2011.
[17]HU Xinxin, WANG Lijin, ZHONG Yiwen.An improved particle swarm optimization algorithm for site index curve model[C]//International Conference on Business Management and Electronic Information (BMEI),2011.
[18]SASITHRADEVI A, SINGH N.Synergy of Adaptive Bacterial Foraging Algorithm and Particle Swarm Optimization Algorithm for Image Segmentation[C]//International Conference on Circuit,Power and Computing Technologies,2015.
[19]商立群,朱伟伟 . 基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法 [J] . 电工技术学报,2019,34(12) :2606-2614.
[20]王立舒,蒋赛加,王君,丁晓成 . 基于混合策略的光伏 MPPT 算法优化控制 [J] . 太阳能学报,2016,37(6) :1396-1402.