Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

柔性多端高压直流输电系统双环附加频率控制研究

来源:电工电气发布时间:2021-06-28 10:28 浏览次数:678
柔性多端高压直流输电系统双环附加频率控制研究
 
马岩1 ,潘欢1,2,纳春宁1,2
(1 宁夏大学 物理与电子电气工程学院,宁夏 银川 750021;
2 宁夏电力能源安全重点实验室,宁夏 银川 750004) 
 
 
    摘 要 :传统 PI 双环解耦电流控制的电压源型转换器难以为孤立交流区域提供频率支持,因此需要增加频率控制环节。通过在 VSC 控制器的有功控制环中增加有功 - 频率下垂控制,在无功环中增加无功频率微分控制,设计一种基于本地信号、无需远程通信的双环附加频率控制策略。该控制策略主要通过共享风电场功率裕度实现对 AC 区域的频率支持,同时通过无功环附加频率控制改善交流区域频率响应暂态性能。在 MATLAB/Simulink 仿真平台搭建 4 端柔性高压直流输电系统,验证了双环附加频率控制策略的有效性。
    关键词 :柔性多端高压直流输电 ;下垂控制 ;双环附加控制 ;功率裕度 ;频率支持
    中图分类号 :TM712 ;TM721.1     文献标识码 :A     文章编号 :1007-3175(2021)06-0001-07
 
Research on Double Loop Additional Frequency Control of
VSC-MTDC System
 
MA Yan1 , PAN Huan1,2, NA Chun-ning1,2
(1 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2 Ningxia Key Laboratory of Electrical Energy Security, Yinchuan 750004, China)
 
    Abstract: The voltage source converter which based on traditional PI double loop decoupling current control is difficult to provide frequency support for isolated AC region, so it needs to add frequency control link. By adding active-frequency droop control in active control loop of VSC controller in AC area side and reactive-frequency differential control in reactive loop, a dual loop additional frequency control based on local signal and without remote communication is designed. The control strategy can support the frequency of AC area by sharing the power margin of WPP, at the same time, the additional frequency control of reactive power loop is used to improve the transient performance of AC frequency response. A four-terminal VSC-MTDC system is built on MATLAB/Simulink simulation platform to verify the effectiveness of the dual loop additional frequency control strategy.
    Key words: VSC-MTDC; droop control; double loop additional control; power margin; frequency support
 
参考文献
[1] BOZHKO S, ASHER G, LI R, et al.Large offshore DFIG-based wind farm with line-commutated HVDC connection to the main grid :Engineering studies[J].IEEE Transactions on Energy Convertsion,2008,23(1) :119-127.
[2] GOMIS-BELLMUNT O, LIANG J, EKANAYAKE J,et al.Voltage current characteristics of multiterminal HVDC-VSC for offshore wind farms[J].Electric Power Systems Research,2011,81(2) :440-450.
[3] XU Lie , YAO Liangzhong , SASSE C . Grid integration of large DFIG-based wind farms using VSC transmission[J].IEEE Transactions on Power Systems,2007,22(3) :976-984.
[4] 姚良忠,吴婧,王志冰,等 . 未来高压直流电网发展形态分析 [J] . 中国电机工程学报,2014,34(34) :6007-6020.
[5] CHAUDHURI N R, CHAUDHURI B.Adaptive droop control for effective power sharing in Multi Terminal DC(MTDC) grids[J].IEEE Transactions on Power Systems,2013,28(1) :21-29.
[6] CHAUDHURI N R, MAJUMDER R, CHAUDHURI B.System frequency support through Multi-Terminal DC(MTDC) grids[J].IEEE Transactions on Power Systems,2013,28(1) :347-356.
[7] ZHANG L, HARNEFORS L, NEE H P.Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control[J].IEEE Transactions on Power Systems,2011,26(1) :344-355.
[8] GUAN M, CHENG J, WANG C, et al.The frequency regulation scheme of interconnected grids with VSC-HVDC links[J].IEEE Transactions on Power Systems,2017,32(2) :864-872.
[9] ANDREASSON M, WIGET R, DIMAROGONAS D V, et al.Distributed frequency control through MTDC transmission systems[J].IEEE Transactions on Power Systems,2017,32(1) :250-260.
[10]MORREN J, DEHAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J].IEEE Transactions on Power Systems,2006,21(1) :433-434.
[11]DAI J, PHULPIN Y, SARLETTE A, et al.Impact of delays on a consensus-based primary frequency control scheme for AC systems connected by a multi-terminal HVDC grid[C]//Bulk Power System
Dynamics and Control- Ⅷ (IREP),2010 :1-9.
[12]BIANCHI F D, DOMINGUEZ-GARCIA J L, GOMIS BELLMUNT O.Control of multi-terminal HVDC networks towards wind power integration: A review[J].Renewable and Sustainable Energy Reviews,2016,55(1) :1055-1068.
[13]BIANCHI F D, DOMINGUEZ-GARCIA J L, VRANA T K.Distributed frequency control with partial information using MT-HVDC grids and WPPs[J].IEEE Systems Journal,2019,13(2) :1694-1701.
[14]王炜字,李勇,曹一家,等 . 参与电网调频的多端柔性直流输电系统自适应下垂控制策略 [J] . 电力系统自动化,2017,41(13) :142-149.
[15]杨金刚,袁志昌,李顺昕,等 . 经柔性直流输电并网的大型风电场频率控制策略 [J] . 电力自动化设备,2019,39(6) :109-114.
[16]吴岩松 . 基于 IGBT 开关动态特性离线测试系统的大功率逆变器热 - 电耦合研究 [D]. 杭州:浙江大学,2013.
[17]吴蒙,贺之渊,阎发友,等 . 下垂控制对直流电网动态电压稳定性的影响分析 [J] . 电力系统保护与控制,2019,47(10) :8-15.
[18]徐进,金逸,胡从川,等 . 适用于海上风电并网的多端柔性直流系统自适应下垂控制研究 [J] . 电力系统保护与控制,2018,46(4) :78-85.
[19]洪莎莎,武迪,吕宏水,等 . 基于高阶系统模型的 VSC-MTDC 下垂控制策略研究 [J]. 电力系统保护与控制,2017,45(22) :125-131.
[20]刘宁宁,曹炜,赵晋斌 . 直流微电网的一种增量式下垂控制方法 [J] . 电力系统保护与控制,2018,46(8) :24-30.
[21]RENEDO J, GARCIA-CERRADA A, ROUCO L.Reactive power coordination in VSC-HVDC multiterminal systems for transient stability improvement[J].IEEE Transactions on Power Systems 2017,32(5) :3758-3767.
[22]吴方劼,马玉龙,梅念,等 . 舟山多端柔性直流输电工程主接线方案设计 [J] . 电网技术,2014,38(10) :2651-2657.
[23]周浩,沈扬,李敏,等 . 舟山多端柔性直流输电工程换流站绝缘配合 [J] . 电网技术,2013,37(4) :879-890.