基于BP神经网络模型的异步电动机故障辨识
乔维德
(无锡开放大学 科研与质量控制处,江苏 无锡 214011)
摘 要:针对目前三相异步电动机故障诊断方法存在的局限性及其缺陷,在利用小波包分析提取电动机故障信号特征量基础上,提出基于蝙蝠-粒子群及改进 BP 算法的异步电动机 BP 神经网络故障辨识模型,采用蝙蝠-粒子群算法优化 BP 神经网络结构参数,利用改进 BP 算法训练 BP 神经网络。仿真结果分析表明,该 BP 神经网络模型用于三相异步电动机故障辨识,辨识速度快、准确度高、可靠性好。
关键词:异步电动机;小波包分析;蝙蝠-粒子群算法;改进 BP 算法;故障辨识
中图分类号:TM307 ;TM343+.2 文献标识码:A 文章编号:1007-3175(2021)08-0006-05
Asynchronous Motor Fault Identification Based on BP Neural Network Model
QIAO Wei-de
(Scientific Research and Quality Control Division, Wuxi Open University, Wuxi 214011,China)
Abstract: In view of the limitations and deficiencies of current three-phase asynchronous motor fault diagnosis methods, based on the use of wavelet packet analysis to extract the characteristics of the motor fault signal, a fault identification model of asynchronous motor BP neural network based on bat-particle swarm and improved BP algorithm is proposed. The bat-particle swarm algorithm is used to optimize the structural parameters of the BP neural network, and the improved BP algorithm is used to train the BP neural network. The analysis of simulation results shows that the BP neural network model is used for fault identification of three-phase asynchronous motors, with fast identification speed, high accuracy and good reliability.
Key words: asynchronous motor; wavelet packet analysis; bat-particle swarm algorithm; improved BP algorithm; fault identification
参考文献
[1] 贺颖,王志兰,李盼,等. BP 神经网络在异步电机转子故障诊断中的应用[J] . 电力学报,2015,30(6) :495-499.
[2] 乔维德. 一种电机故障的智能诊断方法研究[J] .电气传动自动化,2010,32(1) :43-45.
[3] 乔维德. 基于改进粒子群混合算法的电机故障诊断研究[J]. 江苏电器,2007(4) :21-24.
[4] 张瑞祥,赵车红,胡永胜. 小波包在异步电机转子断条故障检测中的应用[J] . 自动测量与控制,2006,25(9) :68-69.
[5] 乔维德. 萤火虫-粒子群优化神经网络的异步电机转子断条故障诊断[J] . 电机与控制应用,2017,44(1) :83-88.
[6] 乔维德. 用于电动汽车电池 SOC 预测的 BP 神经网络模型[J] . 石家庄学院学报,2018,20(3) :31-37.
[7] 李强,车文龙. 基于改进粒子群优化神经网络的电机故障诊断[J] . 电气传动,2020,50(1) :103-108.