Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

一种基于非线性GPR模型的低压电力线信道估计算法

来源:电工电气发布时间:2021-08-18 12:18 浏览次数:674

一种基于非线性GPR模型的低压电力线信道估计算法

李思维,杨国华,柳勇,邢潇文
(宁夏大学 物理与电子电气工程学院,宁夏 银川 750021)
 
    摘 要:针对信号在低压电力线载波通信信道传输的过程中容易受到非线性脉冲噪声干扰,从而造成信号的频率选择性衰落,导致信号误码率高的问题,提出了一种改进最小平方-高斯过程回归 (LS-GPR) 的信道估计算法,并进行了非线性脉冲干扰消除的迭代实验,在存在脉冲干扰的条件下对算法的误码率进行了仿真计算。结果表明,该改进算法能够较大程度地消除脉冲噪声所带来的影响,在低信噪比的情况下有效降低了系统的误码率,具有良好的信道估计性能。
    关键词:电力线载波通信;信道估计;高斯过程回归;脉冲干扰消除
    中图分类号:TM726     文献标识码:A     文章编号:1007-3175(2021)08-0001-05
 
A Channel Estimation Algorithm for Low-Voltage Power Line
Based on Nonlinear GPR Model
 
LI Si-wei, YANG Guo-hua, LIU Yong, XING Xiao-wen
(School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
    Abstract: Signals are susceptible to interfered by non-linear impulse noise during transmission in the low-voltage power line carrier communication channel, which could cause signals a frequency selective fading even a high bit error rate. To solve this problem, an improved channel estimation algorithm is proposed in this paper that is based on the improved LS-GPR (Least Square-Gaussian Processes Regression).Iteration experiments of non-linear pulse interference elimination are carried out to test the bit error rate performance of this algorithm under impulse interference. The results indicated that the improved algorithm can eliminate the interference from impulse noise at a large extend,and can effectively decrease the bit error rate under a low signal-to-noise ratio, in short, a good performance on channel estimation.
    Key words: power line carrier communication; channel estimation; Gaussian processes regression; pulse interference elimination
 
参考文献
[1] OKSMAN V, GALLI S. G.hn :The new ITU-T home networking standard[J].IEEE Communications Magazine,2009,47(10) :138-145.
[2] 钟菲,刘洋,张学敏,赵紫斐. 基于智能电网的电力线通信技术发展及应用研究[J] . 通信电源技术,2018,35(12) :158-159.
[3] 陆俊,刘振宇,徐志强,朱炎平. 计及接入控制策略的宽带电力线 OFDM 系统跨层资源分配[J]. 电网技术,2016,40(6) :1858-1866.
[4] 郭铁梁,李志军,张文祥. OFDM 水声通信 CS 限幅失真补偿与 LS 信道估计优化算法[J] . 应用声学,2021,40(2) :287-293.
[5] 谢志远,陈文,曹旺斌,张子忠. 中压电力线通信自适应 OFDM 系统背景噪声抑制技术研究[J]. 电测与仪表,2019,56(24) :21-25.
[6] 孔慧娟. 窄带低压电力线信道的阻抗测量与特性分析[J]. 电子测量技术,2012,35(3) :57-61.
[7] 邱上飞,薛伦生,陈西宏. 改进的时频同步与信道联合估计方法[J] . 探测与控制学报,2020,42(6) :61-67.
[8] 丁剑飞,孙德春,李兆刚. 基于压缩感知的电力线脉冲噪声抑制改进算法[J] . 计算机应用研究,2020,37(S2) :289-290.
[9] 赵闻,张捷,李倩,党三磊,吴倩文,路韬. MIMO 电力线载波通信中基于压缩感知的信道与脉冲噪声联合估计方法[J] . 通信技术,2020,53(9) :2101-2107.
[10] FANG L, HUANG D.Neumann Series Expansion Based LMMSE Channel Estimation for OFDM Systems[J].IEEE Communications Letters,2016,20(4) :748-751.
[11] KHALID Hassan, ALI Muhammad, AHMED Nisar.Gaussian Process-Based Feature-Enriched Blind Image Quality Assessment[J].Journal of Visual Communication and Image Representation,2021,77(1) :103092.
[12] RASTGOU M, BAYAT H, MANSOORIZADEH M, GREGORY A S.Prediction of Soil Hydraulic Properties by Gaussian Process Regression Algorithm in Arid and Semiarid Zones in Iran[J].Soil & Tillage Research,2021,210(6) :104980.
[13] 廉钰莹. 基于 OFDM 的电力线载波通信信道估计[D].吉林:吉林大学,2017.
[14] 郑建宏,邓湛. 一种抗脉冲噪声的宽带电力线通信系统信道估计算法[J] . 重庆邮电大学学报( 自然科学版),2019,31(1) :44-49.