基于朴素贝叶斯算法的避雷器缺陷识别方法研究
李亚锦1,刘英男1,张婉莹1,于大洋1,张国新1,苏宁2
(1 山东大学 电气工程学院,山东 济南 250061;
2 海南电网有限责任公司琼海供电局,海南 琼海 571400)
摘 要:高温、高湿、高盐特殊环境下,加速了避雷器劣化或潜伏性缺陷的发展。仅依靠避雷器监测指标判断缺陷,难以识别特殊环境下避雷器的异常状态。提出一种基于朴素贝叶斯算法的避雷器缺陷识别技术,提取特殊环境下影响避雷器运行状态的关键特征量,通过朴素贝叶斯算法计算训练样本的先验概率和测试样本的后验概率,从而识别避雷器缺陷类型。利用实际监测和检测数据进行分析,验证了所提方法的可行性和正确性。
关键词:朴素贝叶斯算法;特殊环境;带电检测;避雷器;缺陷识别
中图分类号:TM862 文献标识码:A 文章编号:1007-3175(2022)01-0020-04
Research on Classification of Arrester Defect Diagnosis Based on Naive
Bayes Algorithm Inference
LI Ya-jin1, LIU Ying-nan1, ZHANG Wan-ying1, YU Da-yang1, ZHANG Guo-xin1, SU Ning2
(1 School of Electrical Engineering, Shandong University, Jinan 250061, China;
2 Qionghai Power Supply Bureau of Hainan Electric Power Co., Ltd, Qionghai 571400, China)
Abstract: The special environment of high temperature, high humidity, and high salt could accelerate the development of the deterioration or latent defects of the arrester.It is difficult to identify the abnormal state of the arrester in the special environment just relying on the monitoring index of the arrester.This paper proposed arrester defect diagnosis technology based on Naive Bayes, which extracted the key features that affect the operation state of the arrester in a special environment. It calculated the prior probability of training samples and the posterior probability of test samples through a Naive Bayes algorithm to identify the type of arrester defects. The feasibility and correctness of the proposed method are analyzed and it verified by the actual monitoring and detection data.
Key words: Naive Bayes algorithm; special environment; live detection; arrester; defect diagnosis
参考文献
[1] 张弛,曾杰,吕旺燕,等. 海岛微电网高温、高湿、高盐环境条件监测及防护研究[J] . 环境技术,2019,37(3) :89-94.
[2] 史志强,邓维,罗日成,等. 氧化锌避雷器受潮与电气参数的关系[J] . 高压电器,2019,55(4) :233-238.
[3] 王宏伟,张利民,姜建平,等. 特高压站避雷器泄漏电流在线监测和分析系统[J] . 电瓷避雷器,2019(6) :67-72.
[4] 田世杰,张亮,林楚乔,等. 基于带电检测技术金属氧化物避雷器故障发现与分析[J] . 电工技术,2019(1) :91-92.
[5] 刘英男, 李亚锦, 苏宁, 等. 基于带电检测的变电设备差异化运维策略研究[J] . 电工电气,2021(9) :34-37.
[6] 张搏宇,李光范,张翠霞,等. 污秽条件下避雷器的内部温升研究[J] . 高电压技术,2011,37(8) :2065-2072.
[7] 李海峰,刘俊勇,徐斌,等. 消除外部环境因素干扰的 MOA 在线监测参数修正方法[J]. 高电压技术,2018,44(8) :2580-2586.
[8] 陈景亮,姚学玲. MOV 阻性电流谐波补偿法的研究[J]. 高电压技术,2007,33(3) :53-57.
[9] 彭红霞,文艳,王磊,等. 基于两层知识架构的电力设备差异化运维技术[J] . 高压电器,2019,55(7) :221-226.
[10] 方红燕,王蕊,杨文志,等. 贝叶斯公式实例的深度挖掘[J] . 曲阜师范大学学报(自然科学版),2018,44(4) :7-10.
[11] WILLIAMS C K I , BARBER D . Bayesian Classification with Gaussian Processes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12) :1342-1351.