Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于自组织竞争网络与RPROP算法的线损计算研究

来源:电工电气发布时间:2022-07-18 14:18 浏览次数:392

基于自组织竞争网络与RPROP算法的线损计算研究

张艳,徐卫锋
(国网上海市电力公司市南供电公司,上海 200233)
 
    摘 要:为更好地发现高效的降损措施,并为科学地制定线损目标提供依据,提出了一种基于自组织竞争神经网络的 RPROP 神经网络的线损计算方法。RPROP 神经网络确保了网络在有限的训练次数下能够收敛,利用自组织竞争神经网络对信息数据进行有效分类,提高了 RPROP 神经网络的输出精度。通过在 MATLAB 平台进行仿真实验,并与线性回归算法、标准 BP 神经网络算法,以及未分类的 RPROP 算法进行比较,验证了该方法的有效性。
    关键词: 线性回归算法;BP 神经网络;RPROP 神经网络;自组织竞争神经网络;线损
    中图分类号:TM744     文献标识码:A     文章编号:1007-3175(2022)07-0031-04
 
The Research on Line Loss Calculation of RPROP Algorithm Based on
Self-Organizing Competitive Network
 
ZHANG Yan, XU Wei-feng
(State Grid Shanghai Shinan Electric Power Supply Company, Shanghai 200233, China)
 
    Abstract: This paper proposed a line loss calculation based on the self-organizing competitive network of the RPROP neural network to find efficient loss reduction measures and provide the basis for scientifically formulating line loss targets.The RPROP neural network ensured that the network could converge under a limited number of training times. Moreover, it utilized a self-organizing competitive neural network to effectively classify informative data, which improved the output accuracy of the RPROP neural network.By doing simulation experiments on the MATLAB platform and comparing with linear regression algorithm, standard BP neural network algorithm, unclassified RPROP algorithm,it verified the effectiveness of the proposed method.
    Key words: linear regression algorithm; BP neural network; RPROP neural network; self-organizing competitive neural network; line loss
 
参考文献
[1] 李俊楠,闫利,张世林,等. 综合线路率及线损波动分析[J]. 电力系统装备,2020(15) :115-116.
[2] 张银,张祥华,伏圣群,等. 中压配电网极限线损计算方法研究[J] . 广西科技大学学报, 2017,28(2) :67-73.
[3] 陈哲. 基于 BP 神经网络的配网设备故障预测[D] .广州:广东工业大学,2017.
[4] 倪洋. 基于 BP 神经网络的配网线损计算分析[D] .大连:大连理工大学,2018.
[5] 马锐.人工神经网络原理[M] . 北京:机械工业出版社,2010.
[6] 陈明.MATLAB 神经网络原理与实例精解[M]. 北京:清华大学出版社,2013.
[7] RIEDMILLER M, BRAUN H.A direct adaptive method for faster back propagation learning:The RPROP algorithm[C]//IEEE International Conference on Neural Networks,1993.
[8] 朱凯,王正林. 精通 MATLAB 神经网络[M]. 北京:电子工业出版社,2010.
[9] 张德丰.MATLAB 神经网络应用设计[M].2 版. 北京:机械工业出版社,2012.