Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

低风速地区风电场优化模型对发电质量的影响

来源:电工电气发布时间:2022-08-29 12:29 浏览次数:240

低风速地区风电场优化模型对发电质量的影响

张宇,王凤昊,刘洋,余文林
(中国能源建设集团江苏省电力设计院有限公司,江苏 南京 211102)
 
    摘 要:开展低风速地区风电场微观选址的优化研究对风电行业的发展至关重要。选取我国中东南部低风速地区为研究对象,应用改进的 Park 尾流模型,综合考虑不同风向分布条件下,各布置方案的发电量和尾流损失随风电机组间距的变化规律,总结出一套微观选址优化布置的规律,为今后微观选址优化模型的研究提供新的理论依据,对提升风电场经济性具有重要意义。
    关键词: 风电机组间距;低风速;微观选址;优化模型
    中图分类号:TM614     文献标识码:B     文章编号:1007-3175(2022)08-0041-07
 
Research on the Influences of the Optimal Electric Field Model on
Power Generating Quality in Low Wind Speed Regions
 
ZHANG Yu, WANG Feng-hao, LIU Yang, YU Wen-lin
(China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd, Nanjing 211102, China)
 
    Abstract: Developing the optimization research on wind farm micro-sitting in low wind speed regions has significant meaning for the wind power generation industry. This paper took the low wind speed regions in the middle and southeast China as examples. It used the modified Park wake model to study the power generation of different layout schemes and detect the changing rules of wake loss in changing wind turbine space under conditions of various wind distribution. Therefore, it summarized an optimal layout of micro-sitting law.This law provides a new theoretical basis for the research of the micro-sitting optimization model, and it has significant meaning in improving the economy of wind farms.
    Key words: wind turbine spacing; low wind speed; micro-sitting; optimization model
 
参考文献
[1] 李岩,吴迪,洪畅,等. 大型海上风电场风机排布优化策略研究[J]. 太阳能,2020(2) :67-74.
[2] 韦伟,张小莲,倪良华,等. 含低风速分布式风电的交直流混合配电网的直流母线电压控制[J] . 可再生能源,2019,37(10):1492-1498.
[3] 刘永前,邵振州,颜灵伟,等. 基于改进二进制萤火虫算法的风电场微观选址优化研究[J] . 可再生能源,2019,37(1):112-118.
[4] 王红光,赵海军,段晓辉. 复杂地形风电场微观选址实践探讨[J]. 南方能源建设,2019,6(2) :59-63.
[5] 曹娜,于群,王伟胜,等. 风电场尾流效应模型研究[J]. 太阳能学报,2016,37(1) :222-229.
[6] LISSAMAN P B S.Energy effectiveness of arbitrary arrays of wind turbines[C]//The 17th Aerospace Science Meeting,1979.
[7] RODRIGUES S C A, BAUER P, BOSMAN P A N.Multi-objective optimization of wind farm layouts-complexity, constraint handling and scalability[J].Renewable & Sustainable Energy Reviews,2016,9(3) :587-609.
[8] ZHONG Jueyu, YONG Geng, HAN Chengdai, et al.A general equilibrium analysis on the impacts of regional and sectoral emission allowance allocation at carbon trading market[J]Journal of Cleaner Production,2018,192:421-432.
[9] 戴怡. 威布尔区间估计之似然比定理的适用性探讨[J]. 机械设计,2021,38(10) :73-78.
[10] CHANG Fuxing, LI Changzhen, ZHENG Hongjiang,et al.Measurement-based characteristics of V2V channel for the scenarios of two vehicles meeting[J].Physical Communication,2021,48(10) :101425.
[11] ONGAKI L N,MAGHANGA C M,KERONGO J.Evaluation of the Technical Wind Energy Potential of Kisii Region Based on the Weibull and Rayleigh Distribution Models[J].Journal of Energy,2021 :1-17.
[12] 王尼娜,陆艳艳,刘树洁,等. 基于 WAsP 的近海风电场发电量计算研究[J] . 全球能源互联网,2019,2(2):163-169.
[13] 黄权开,卢成志,刘永生,等. 基于 WT 与 WindPRO 的风场风能评估与微观选址[J] . 人民长江,2021,52(6):89-94.
[14] 孙辉,吴姝雯,王超. 尾流效应对风电场功率输出的影响分析[J] . 华北电力大学学报,2015,42(2):55-60.
[15] JENSEN N O . A note on wind generator interaction [M].Roskilde:Riso National Laboratory,1984.
[16] 程雪婷,张家瑞,刘新元,等. 考虑风机排序的风电集群分层有功控制策略[J] . 电力工程技术,2021,40(2) :26-32.
[17] 张宇. 单列风电机组尾流优化模型的研究及应用[J]. 水电能源科学,2017,35(8):160-164.
[18] 宫靖远. 风电场工程技术手册[M] . 北京:机械工业出版社,2004.
[19] 陟晶,张高航,邵冲,等. 含大规模风电及光热电站的电力系统优化调度方法[J] . 电力工程技术,2021,40(1):79-85.
[20] 王洁,许昌,韩星星,等. 基于风力机尾流排斥的平坦地形风电场微观选址优化[J] . 电力系统自动化,2020,44(15):62-69.