Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于M法的主动配电网动态重构

来源:电工电气发布时间:2023-04-26 10:26 浏览次数:391

基于M法的主动配电网动态重构

王以琳,张卫江,闫杨舒,谢华北,崔世庭,高遥
(西藏农牧学院 西藏土木水利电力工程技术研究中心重点实验室,西藏 林芝 860100)
 
    摘 要:配电网是以闭环设计开环运行,在重构时需要建立相应的结构约束,来保证配电网结构的完整性。利用改进环网编码策略对形成的孤岛划分,采用打捆 (设置禁忌支路组解集) 的方式避免不可行解的生成。以网损最小为目标函数,建立相关潮流约束,通过二阶锥规划和 M 松弛将模型转换为混合整数二阶锥规划模型。通过商业求解器 YALMIP 中的 CPLEX 建模工具对模型求解,并以 IEEE 33 节点为算例,验证了提出的重构方法的有效性和可行性。
    关键词: 配电网重构;主动管理元素;二阶锥规划;M 松弛
    中图分类号:TM715     文献标识码:A     文章编号:1007-3175(2023)04-0021-05
 
Dynamic Reconfiguration of Active Distribution Network Based on M-Method
 
WANG Yi-lin, ZHANG Wei-jiang, YAN Yang-shu, XIE Hua-bei, CUI Shi-ting, GAO Yao
(Key Laboratory of Tibet Civil Hydraulic and Electric Engineering Technology Research Center,
Tibet Agricultural and Animal Husbandry University, Nyingchi 860100, China)
 
    Abstract: The distribution network is operated in open loop and designed in closed loop, so the corresponding structural constraint has to be established to ensure the integrity of the distribution network structure. The improved ring network coding strategy is adopted to divide the formed islands which are bundled (set up taboo branch group solution set) to avoid the generation of infeasible solutions. Then, the relevant power flow constraints are established to achieve the objective function of minimal network losses, and the second-order cone programming and M-relaxation are used to convert the model into a mixed integer second-order cone programming model. Finally, the model is solved by CPLEX modeling tool from a commercial solver YALMIP. The effectiveness and feasibility of the proposed reconfiguration method is verified by taking IEEE 33 nodes as an example.
    Key words: distribution network reconfiguration; active management element; second-order cone programming; M-relaxation
 
参考文献
[1] 邹才能,熊波,薛华庆,等. 新能源在碳中和中的地位与作用[J] . 石油勘探与开发,2021,48(2):411-420.
[2] 莫芸,匡萃浙. 分布式可再生能源接入对配电网的影响分析[J]. 中国电力教育,2013(27):193-194.
[3] LIU Junyong, GAO Hongjun, MA Zhao, et al.Review and prospect of active distribution system planning[J].Journal of Modern Power Systems and Clean Energy,2015,3(4):457-467.
[4] 汤晓青,刘辉,范宇,等. 基于改进多目标遗传算法的实时发电市场优化调度研究[J] . 电力系统保护与控制,2017,45(17):65-71.
[5] 蔡博,黄少锋. 基于多目标粒子群算法的高维多目标无功优化[J] . 电力系统保护与控制,2017,45(15):77-84.
[6] 高红均,刘俊勇,沈晓东,等. 主动配电网最优潮流研究及其应用实例[J] . 中国电机工程学报,2017,37(6):1634-1644.
[7] 任建文,郭玉天. 基于环网编码和混合智能优化算法的配电网重构[J]. 现代电力,2013,30(3):28-31.
[8] 王磊,吕娟,张强. 基于最小生成树算法的配电网络重构[J]. 陕西电力,2009,37(1):13-17.
[9] 傅长熠,杨镜非,顾家辉. 基于双层动态时段划分的配电网重构[J] . 电力自动化设备,2022,42(6):30-36.
[10] 徐成司,董树锋,朱嘉麒,等. 基于供电环路非连通条件的配电网辐射状约束描述方法[J] . 电力系统自动化,2019,43(20):82-89.
[11] 刘一兵,吴文传,张伯明,等. 基于混合整数二阶锥规划的主动配电网有功-无功协调多时段优化运行[J]. 中国电机工程学报,2014,34(16):2575-2583.
[12] GAN Lingwen, LI Na, TOPCU U, et al.Exact convex relaxation of optimal power flow in radial networks[J].IEEE Transactions on Automatic Control,2015,60(1):72-87.
[13] 陈怀毅,胡英坤,杨毅,等. 二阶锥松弛在配电网最优潮流计算中的应用[J] . 电气应用,2020,39(1):49-54.