110 kV冷绝缘超导电缆本体优化设计
曹雨军1,2,朱红亮1,2,夏芳敏1,2,程佳广1,2
(1 富通集团(天津)超导技术应用有限公司,天津 300384;
2 天津市超导电缆应用企业重点实验室,天津 300384)
摘 要:超导电缆具有线路损耗低、传输容量大、走廊占地小、环境友好等诸多优点,可有效提高大容量电网的安全性和稳定性。介绍了冷绝缘超导电缆本体设计思路、优化方法以及设计时需掌握的原则,并以 110 kV/3 kA 等级的超导电缆为例,通过结构参数优化设计,绕制完成电缆短样,并在低温 @77 K 环境下进行了交、直流通流能力测试,检验了优化设计的合理性,为类似结构超导电缆的参数设计提供了借鉴和参考。
关键词: 冷绝缘超导电缆;结构设计;层流分布
中图分类号:TM26 文献标识码:A 文章编号:1007-3175(2023)05-0024-05
Optimization Design of 110 kV Cold Dielectric Superconductor Cable Body
CAO Yu-jun1,2, ZHU Hong-liang1,2, XIA Fang-min1,2, CHENG Jia-guang1,2
(1 Futong Group (Tianjin) Superconductor Technologies and Applications Co., Ltd, Tianjin 300384, China;
2 Tianjin Enterprise Key Laboratory of Superconducting Cable Applications, Tianjin 300384, China)
Abstract: The superconductor cable has many advantages, such as low line losses, large transmission capacity, small corridor occupation and great environmental friendliness, which can effectively improve the safety and stability of large-capacity power grids. The paper first introduces design thoughts, optimization methods and basic principles of the cold dielectric superconductor cable body. Then, taking the 110 kV/3 kA superconductor cable as an example, it optimizes structural parameters, winds the short sample of the cable and conducts AC and DC flow capacity tests under the low temperature @77 K to verify the rationality of this optimization design, which provides reference for the parameter design of superconductor cables with similar structure.
Key words: cold dielectric superconductor cable; structural design; laminar flow distribution
参考文献
[1] 国网能源研究院有限公司. 中国能源电力发展展望2021[M]. 北京:中国电力出版社,2021.
[2] 李继春,张立永,曹雨军,等. 百米级冷绝缘高温超导电缆系统设计及运行[J] . 低温与超导,2021,49(3):19-23.
[3] 周华峰,李敬东,唐跃进,等. 高温超导电力电缆的发展[J]. 电力系统自动化,2001,25(8):71-74.
[4] 宝旭峥.110 kV 冷绝缘高温超导电缆优化设计与均流特性研究[D]. 北京:北京交通大学,2011.
[5] 张俊,李敬东,唐跃进,等. 高温超导电缆的过电流保护[J]. 电线电缆,2004(1):35-37.
[6] 王醒东. 高温超导电缆绝缘层材料及绝缘厚度基本设计原理[J]. 新材料产业,2015(12):47-49.
[7] 夏占军,郭立杰,诸嘉慧.110 kV 冷绝缘高温超导电缆本体绝缘设计[J] . 低温与超导,2011,39(12):1-4.
[8] 刘志凯,李卫国,魏斌,等. 冷绝缘超导电缆绝缘设计及测试方法的简介[J] . 低温与超导,2013,41(6):34-37.