电动汽车充电站短期负荷的神经网络预测模型
乔维德1,乔淳2
(1 无锡开放大学 科研与发展规划处,江苏 无锡 214011;
2 锡山水务集团有限公司,江苏 无锡 214101)
摘 要:为提高电动汽车充电站短期负荷预测精确度,以某电动汽车充电站的相关数据为依据,分析了电动汽车充电站的负荷特性以及影响负荷变化的主要因素,并构建了基于人工鱼群-蛙跳算法优化反向传播 (BP) 神经网络的电动汽车充电站短期负荷预测模型。仿真算例结果表明,该模型预测优势明显,预测速度快,预测精度高,适用于电动汽车充电站的短期负荷预测,为下一步工程实践应用提供了理论依据。
关键词: 电动汽车充电站;短期负荷预测;神经网络
中图分类号:U469.72 ;TM714 文献标识码:A 文章编号:1007-3175(2023)05-0007-05
Neural Network Forecasting Model for Short-Term Load of
Electric Vehicle Charging Stations
QIAO Wei-de1, QIAO Chun2
(1 Scientific Research and Development Planning Office of Wuxi Open University, Wuxi 214011, China;
2 Xishan Water Group Co., Ltd, Wuxi 214101, China)
Abstract: In order to increase the short-term load forecasting accuracy of electric vehicle charging stations, the paper, according to the relevant data of a electric vehicle charging station, makes analysis of its load characteristics and main factors affecting load variation, and builds a short-term load forecasting model of electric vehicle charging stations based on the back propagation (BP) neural network optimized by artificial fish-frog leap algorithm. The simulation results show that this model has great advantages of fast forecasting speed and high forecasting accuracy. It not only suits for short-term load forecasting of electric vehicle charging stations, but also provides a theoretical basis for the next engineering practice.
Key words: electric vehicle charging station; short-term load forecasting; neural network
参考文献
[1] 乔维德. 电动汽车锂电池荷电状态的径向基神经网络预测[J] . 黄冈职业技术学院学报,2021,23(5):120-123.
[2] 王哲,代兵琪,李相栋. 基于 PSO-SNN 的电动汽车充电站短期负荷预测模型研究[J] . 电气技术,2016(1):46-50.
[3] 乔维德. 基于人工鱼群-蛙跳神经网络的变压器故障诊断[J] . 常熟理工学院学报,2016,30(4):70-74.
[4] 孙婉婉,杨乐. 基于遗传算法优化神经网络的电动汽车负荷短期预测[J]. 电工电气, 2019(9):18-21.
[5] 常德政,任杰,赵建伟,等. 基于 RBF-NN 的电动汽车充电站短期负荷预测研究[J] . 青岛大学学报(工程技术版),2014,29(4):44-48.