Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于MFCC和CNN的变压器声学特征提取及故障识别

来源:电工电气发布时间:2023-06-30 12:30 浏览次数:404

基于MFCC和CNN的变压器声学特征提取及故障识别

宋诚1,夏翔1,王鑫一2,杨文星2,姚平2
(1 国网湖北省电力有限公司孝感供电公司,湖北 孝感 432000;
2 长江大学 物理与光电工程学院,湖北 荆州 434023)
 
    摘 要:在变压器故障诊断中,为解决使用传统分类器方法存在的泛化能力弱、识别率不高等问题,提出了一种基于梅尔频率倒谱系数 (MFCC) 和卷积神经网络 (CNN) 的变压器声学特征提取及故障识别方法。利用数字麦克风采集变压器在不同工作状态下的声音信号,经预处理后计算其 MFCC 特征作为静态特征,并进一步处理得到 ΔMFCC 特征以及 ΔΔMFCC 特征作为动态特征;引入卷积神经网络模型作为分类器,分别使用静态特征与三者的融合特征作为数据集进行了训练;对两个模型的训练结果进行了分析,并在其他配电室对系统进行了验证实验。实验结果表明,该方法能够有效地根据变压器工作声音识别变压器的正常工作状态、过载状态以及放电故障,且动态特征的引入能够在一定程度上提高模型的识别效果。
    关键词: 变压器;声音信号;故障诊断;梅尔频率倒谱系数;卷积神经网络;动态特征
    中图分类号:TM407     文献标识码:A     文章编号:1007-3175(2023)06-0049-06
 
Transformer Acoustic Feature Extraction and Fault
Identification Based on MFCC and CNN
 
SONG Cheng1, XIA Xiang1, WANG Xin-yi2, YANG Wen-xing2, YAO Ping2
(1 State Grid Hubei Electric Power Co., Ltd. Xiaogan Power Supply Company, Xiaogan 432000, China;
2 School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China)
 
    Abstract: The traditional classifier method has problems of weak generalization ability and low recognition rate when diagnosing transformer faults, so the paper proposes a transformer acoustic feature extraction and fault identification method based on Mel Frequency Cepstral Coefficient(MFCC)and Convolutional Neural Networks(CNN). First, acoustic signals of transformers in different operating states are collected by digital microphones, and after the preprocess their MFCC features are calculated as static features and then further processed to obtain ΔMFCC features as well as ΔΔMFCC features as dynamic features. Second, the convolutional neural network model is introduced as the classifier, and static features and the fused features of the three are used respectively as the data set for training. Third, training results of the two models are analyzed, and the system is validated with experiments in other distribution rooms. The experimental results show that this method can effectively identify the normal working state, the overload state and the discharge fault of transformers based on their working sound. Besides, the introduction of dynamic features can increase the identification of the model to a certain extent.
    Key words: transformer; acoustic signals; fault diagnosis; Mel frequency cepstral coefficient; convolutional neural network; dynamic feature
 
参考文献
[1] 李刚,于长海,刘云鹏,等. 电力变压器故障预测与健康管理:挑战与展望[J] . 电力系统自动化,2017,41(23):156-167.
[2] 翟永杰,杨旭,彭雅妮,等. 基于计算机听觉技术的电力设备状态监测研究综述[J] . 广东电力,2019,32(9):24-32.
[3] MA Xin, LUO Yu, SHI Jian, et al.Acoustic Emission Based Fault Detection of Substation Power Transformer[J].Applied Sciences,2022,12(5):2759.
[4] 耿琪深,王丰华,金霄. 基于 Gammatone 滤波器倒谱系数与鲸鱼算法优化随机森林的干式变压器机械故障声音诊断[J] . 电力自动化设备,2020,40(8):191-196.
[5] 林凡勤,李明明,郭红. 变压器故障诊断技术综述[J]. 计算机与现代化,2022(3):116-126.
[6] 张兆坤, 杨国华, 张佳豪, 等. 基于 VNWOA-LSSVM 变压器故障诊断方法研究[J] . 电工电气,2022(12):32-36.
[7] 朱超,张兆君,谭风雷,等. 基于声音的变压器故障识别[J]. 电工技术,2021(12):82-85.
[8] 翟永杰,彭雅妮,杨旭,等. 融合 MFCC 和 IMFCC 特征的电厂设备声音识别算法[J] . 现代电子技术,2022,45(8):6-12.
[9] 王赵国,韦存海,彭雅妮,等. 基于 GFCC-SVM-RFE 的电力设备声音特征提取方法[J] . 电力信息与通信技术,2022,20(9):34-42.
[10] 巩泉役,彭克,陈羽,等. 基于电弧随机性和卷积网络的交流串联电弧故障识别方法[J] . 电力系统自动化,2022,46(24):162-169.
[11] 杨毫鸽. 飞机发动机异常声音识别方法研究[D] .南昌:南昌航空大学,2018.
[12] 肖毓增,付新华,杨胜仪,等. 声纹识别在电厂设备状态监测中的运用[J] . 物联网技术,2022,12(10):4-7.
[13] 张瑶,罗林根,王辉,等. 基于 MPSO-MLE 的变电站设备异常声源定位方法[J] . 高电压技术,2020,46(9):3145-3153.
[14] 吴国鑫,詹花茂,李敏. 声纹的变压器放电与机械故障诊断研究[J] . 应用声学,2021,40(4):602-610.
[15] 王让定,柴佩琪. 语音倒谱特征的研究[J] . 计算机工程,2003,29(13):31-33.
[16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016.
[17] 孟子超,杜文娟,王海风. 基于迁移学习深度卷积神经网络的配电网故障区域定位[J] . 南方电网技术,2019,13(7) :25-33.