Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

计及电价优化的电动汽车与风电协同优化策略

来源:电工电气发布时间:2023-07-01 10:01 浏览次数:370

计及电价优化的电动汽车与风电协同优化策略

潘韦如1,魏哲2,孙琪3,黄文龙3,王晓东3
(1 鲁东大学 蔚山船舶与海洋学院,山东 烟台 264025;
2 国网山东省电力公司超高压公司,山东 济南 250118;
3 国网山东省电力公司淄博供电分公司,山东 淄博 255000)
 
    摘 要:针对风电出力间歇性和大量电动汽车随机接入配电网的充放电行为会造成配电网功率波动等问题,提出了基于动态分时电价的电动汽车与风电协同优化调度策略。建立了动力电池损耗和风电出力模型,完善了用户和电网两侧的需求;考虑电网稳定性以及不同时段内电动汽车用户进行充放电的成本与收益,构建了以用户充电成本、配电网综合负荷波动以及网损成本最小为目标的数学模型。为解决多变量、多目标约束的优化问题,采取最大模糊满意度法将多目标问题进行归一化处理;利用改进的正余弦优化算法,将充、放电功率和充、放电电价等作为变量进行寻优。IEEE 33 节点算例多场景仿真结果表明,所提策略可以随电动汽车入网信息的变化动态调整电价,增强风电消纳能力,同时在减小峰谷差、减少充电成本和降低网损等方面效果明显。
    关键词: 电动汽车;风电协同优化调度;动态电价;正余弦优化算法
    中图分类号:TM715 ;U469.72     文献标识码:A     文章编号:1007-3175(2023)06-0014-08
 
Collaborative Optimal Strategy of Electric Vehicles and Wind Power with the
Consideration of Electricity Price Optimization
 
PAN Wei-ru1, WEI Zhe2, SUN Qi3, HUANG Wen-long3, WANG Xiao-dong3
(1 Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China;
2 State Grid Shandong Electric Extrahigh Voltage Company, Jinan 250118, China;
3 State Grid Shandong Electric Power Company Zibo Power Supply Branch Company, Zibo 255000, China)
 
    Abstract: In order to solve the problems of intermittent wind power output and distribution network power fluctuation caused by a large number of electric vehicles randomly accessing to the distribution network to charge and discharge, the paper proposes a collaborative optimal scheduling strategy of electric vehicles and wind power based on dynamic time-of-use price. First, models of power battery loss and wind power output are established to improve the needs of both users and power grids. Second, with the consideration of power grid stability and costs and benefits of electric vehicle users’ charging and discharging in different periods, a mathematical model is built to realize the goal of minimizing the user charging costs,the comprehensive load fluctuation of the distribution network and the network loss costs. Third, to optimize the multivariable and multi-objective constraints, the maximum fuzzy satisfaction method is adopted to normalize the multi-objective problem; then, the improved sine cosine optimization algorithm is adopted to optimize the charging and discharging power and price which are used as variables. According to the multi-scenario simulation results of IEEE 33 node example, this strategy is able to dynamically adjust the electricity price with the change of electric vehicle network access, enhance the wind power consumption, and have better effects on reducing peak valley difference, charging cost and network loss.
    Key words: electric vehicles; wind power collaborative optimal scheduling; dynamic price; sine cosine optimization algorithm
 
参考文献
[1] IEA(2021).Global EV Outlook 2021[EB/OL].(2021-1-06)[2022-09-02].https://www.iea.org/reports/global-ev-outlook-2021.2021-04/2022-11-1.
[2] 沈国辉,陈光,赵宇,等. 基于双目标分层优化和 TOPSIS 排序的电动汽车有序充电策略[J]. 电力系统保护与控制,2021,49(11):115-123.
[3] 陆凌蓉,文福拴,薛禹胜,等. 电动汽车提供辅助服务的经济性分析[J] . 电力系统自动化,2013,37(14):43-49.
[4] 周椿奇,向月,张新,等. V2G 辅助服务调节潜力与经济性分析:以上海地区为例[J] . 电力自动化设备,2021,41(8):135-141.
[5] 任丽娜,李相学. 考虑用户行为的电动汽车充电电价制定策略[J] . 燕山大学学报,2021,45(6):505-513.
[6] 常方宇,黄梅,张维戈. 分时充电价格下电动汽车有序充电引导策略[J] . 电网技术,2016,40(9):2609-2615.
[7] CHEN Wen, GUO Chunlin, LI Zongfeng, et al.Research of Time-of-Use Tariff Considering Electric Vehicles Charging Demands[J].Advanced Materials Research,2014,953-954:1354-1358.
[8] 高亚静,吕孟扩,王球,等. 基于离散吸引力模型的电动汽车充放电最优分时电价研究[J] . 中国电机工程学报,2014,34(22):3647-3653.
[9] 李怡然,张姝,肖先勇,等. V2G 模式下计及供需两侧需求的电动汽车充放电调度策略[J] . 电力自动化设备,2021,41(3):129-135.
[10] 郝丽丽,王国栋,王辉,等. 考虑电动汽车入网辅助服务的配电网日前调度策略[J] . 电力系统自动化,2020,44(14):35-43.
[11] 徐智威,胡泽春,宋永华,等. 基于动态分时电价的电动汽车充电站有序充电策略[J] . 中国电机工程学报,2014,34(22):3638-3646.
[12] ZHENG Yuanshuo, LUO Jingtang, YANG Xiaolong,et al . Ntelligent Regulation on Demand Response for Electric Vehicle Charging: A Dynamic Game Method[J].IEEE Access,2020,8:66105-66115.
[13] ZHOU Chengke, QIAN Kejun, ALLAN Malcolm, et al.Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems[J].IEEE Transactions on Energy Conversion,2011,26(4):1041-1050.
[14] 程杉,杨堃,魏昭彬,等. 计及电价优化和放电节制的电动汽车充电站有序充放电调度[J] . 电力系统保护与控制,2021,49(11):1-8.
[15] 张书盈,孙英云. 考虑分时电价和电池损耗的电动汽车集群 V2G 响应成本分析[J] . 电力系统及其自动化学报,2017,29(11):39-46.
[16] 刘利兵,刘天琪,张涛,等. 计及电池动态损耗的电动汽车有序充放电策略优化[J] . 电力系统自动化,2016,40(5):83-90.
[17] 田书欣,程浩忠,曾平良,等. 大型集群风电接入输电系统规划研究综述[J] . 中国电机工程学报,2014,34(10):1566-1574.
[18] SUFYAN M, RAHIM N A, MUHAMMAD M A, et al.Charge coordination and battery lifecycle analysis of electric vehicles with V2G implementation[J].Electric Power Systems Research,2020,184:106307.
[19] 李国庆,翟晓娟,李扬,等. 基于改进蚁群算法的微电网多目标模糊优化运行[J] . 太阳能学报,2018,39(8):2310-2317.
[20] MIRJALILI S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems[J].Knowledge-Based Systems,2016,96:120-133.
[21] TIZHOOSH H R.Opposition-Based Learning: A New Scheme for Machine Intelligence[C]//International Conference on Computational Intelligence for Modelling , Control & Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce,2005:695-701.
[22] 韩江,闵杰. 基于精英反向学习的烟花爆炸式免疫遗传算法[J] . 合肥工业大学学报(自然科学版),2020,43(4):433-437.
[23] 陈丽丹. 电动汽车广泛接入对电网的影响及其调控策略研究[D]. 广州:华南理工大学,2018.
[24] HOU Hui, XUE Mengya, XU Yan, et al.Multiobjective economic dispatch of a microgrid considering electric vehicle and transferable load[J].Applied Energy,2020,262(6):114489.
[25] 王睿,高欣,李军良,等. 基于聚类分析的电动汽车充电负荷预测方法[J] . 电力系统保护与控制,2020,48(16):37-44.