参考文献
[1] WANG K, XI Y.A new method of power quality disturbance classification based on deep belief network[J].Journal of Physics Conference Series,2021,1827(1):012021.
[2] HUANG J, QU H, LI X.Classification for hybrid power quality disturbance based on STFT and its spectral kurtosis[J].Power System Technology,2016,40(10):3184-3191.
[3] 徐佳雄,张明,王阳,等. 基于改进 Hilbert-Huang 变换的电能质量扰动定位与分类[J]. 现代电力,2021,38(4):362-369.
[4] 程志友,杨猛. 基于二维离散余弦 S 变换的电能质量扰动类型识别[J] . 电力系统保护与控制,2021,49(17):85-92.
[5] 徐艳春,樊士荣,谭超,等. 基于改进 EWT-CMPE 的高渗透率主动配电网电能质量扰动检测与分类[J]. 电网技术,2020,44(10):3991-4000.
[6] 杨剑锋,姜爽,石戈戈. 基于分段改进 S 变换的复合电能质量扰动识别[J] . 电力系统保护与控制,2019,47(9):64-71.
[7] SUNDARAM P K, GIRISHKUMAR G.Power Quality Disturbance Classification Based on Kalman Filter and Adaptive Neural Fuzzy Inference System (ANFIS)[C]//International Conference on Robotics and Artificial Intelligence,2021.
[8] BHAGAT A, NIMKAR S, DONGRE K, et al.Power Quality Disturbance Detection and Classification Using Artificial Neural Network Based Wavelet[J].International Journal of Computational Intelligence Research,2017,13(8):2043-2064.
[9] THIRUMALA K , PAL S , JAIN T , et al . A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J].Neurocomputing,2019,334 :265-274.
[10] MAHELA O P, SHAIK A G, KHAN B, et al.Recognition of Complex Power Quality Disturbances Using S-Transform Based Ruled Decision Tree[J].IEEE Access,2020,8:173530-173547.
[11] DAWOOD Z, BABULAL C K.Power quality disturbance classification based on efficient adaptive Arrhenius artificial bee colony feature selection[J].International Transactions on Electrical Energy Systems,2021,31(5):e12868.
[12] MALIK H, ALMUTAIRI A, ALOTAIBI M A.Power quality disturbance analysis using data-driven EMD-SVM hybrid approach[J].Journal of Intelligent and Fuzzy Systems,2021,42(6):1-10.
[13] 曹梦舟,张艳. 基于卷积- 长短期记忆网络的电能质量扰动分类[J] . 电力系统保护与控制,2020,48(2):86-92.
[14] WANG Z, OATES T.Imaging time-series to improve classification and imputation[C]//Proceedings of the 24th International Conference on Artificial Intelligence,2015:3939-3945.
[15] SHUKLA J, PANIGRAHI B K, Ray P K.Power quality disturbances classification based on Gramian angular summation field method and convolutional neural networks[J].International Transactions on Electrical Energy Systems,2021,31(12):e13222.
[16] SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2023-03-10].http://arxiv.org/abs/1409.1556.
[17] 邵凯旋,何怡刚,汪磊. 基于多尺度熵分析与改进 SVM 的变压器故障识别[J] . 电子测量与仪器学报,2022,36(6):161-168.
[18] MAMAT N, HAMZAH F M, JAAFAR O.Hybrid Support Vector Regression Model and K-Fold Cross Validation for Water Quality Index Prediction in Langat River, Malaysia[EB/OL].(2021-02-15)[2023-03-10].http://www.biorxiv.org/content/10.1101/2021.02.15.431242v1.abstract.
[19] IEEE Power & Energy Society.IEEE recommended practice for monitoring electric power quality:IEEE Std 1159-2019[S].Washington:IEEE,2019:34-79.