Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于ICEEMDAN-SVM算法的复合绝缘子缺陷识别研究

来源:电工电气发布时间:2023-10-18 08:18 浏览次数:265

基于ICEEMDAN-SVM算法的复合绝缘子缺陷识别研究

池小佳1,肖建华1,肖晓江1,邢文忠1,吴慰东1,张建峰2,冯浩文3
(1 广东电网有限责任公司揭阳供电局,广东 揭阳 522000;
2 广东电网有限责任公司梅州供电局,广东 梅州 514021;
3 广东工业大学 自动化学院,广东 广州 510006)
 
    摘 要:为了对复合绝缘子进行快速、有效检测,提出了基于改进的自适应白噪声完备集合经验模态分解 (ICEEMDAN) 和支持向量机 (SVM) 相结合的缺陷信号识别方法, 该方法将克服传统经验模态分解的模态混叠缺点,在对复合绝缘子进行超声导波检测时,可准确、快速识别回波信号,保障电力系统稳定运行。对绝缘子进行无缺陷、中部断面缺陷、中部气孔缺陷的有限元仿真,运用 ICEEMDAN 对绝缘子各缺陷类型的超声回波数据进行分解;计算出各模态下的样本熵、排列熵,并通过 SVM 进行复合绝缘子的缺陷类型识别。研究结果表明,基于 ICEEMDAN 与 SVM 的信号识别方法能够较好地提取复合绝缘子的
故障特征并进行缺陷识别分类。 
    关键词: 复合绝缘子;超声导波;缺陷识别;改进的自适应白噪声完备集合经验模态分解;支持向量机
    中图分类号:TM216     文献标识码:A     文章编号:1007-3175(2023)09-0001-07
 
Research on Defect Identification of Composite Insulators
Based on ICEEMDAN-SVM Algorithm
 
CHI Xiao-jia1, XIAO Jian-hua1, XIAO Xiao-jiang1, XING Wen-zhong1, WU Wei-dong1, ZHANG Jian-feng2, FENG Hao-wen3
(1 Guangdong Power Grid Co., Ltd. Jieyang Power Supply Bureau, Jieyang 522000, China;
2 Guangdong Power Grid Co., Ltd. Meizhou Power Supply Bureau, Meizhou 514021, China;
3 School of Automation, Guangdong University of Technology, Guangzhou 510006, China)
 
    Abstract: In order to detect composite insulators quickly and effectively, a defect signal recognition method based on ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) and SVM (Support Vector Machine) is proposed in this paper. It not only can overcome mode mixing of the traditional empirical mode decomposition, but also can identify echo signals accurately and quickly to ensure the stable operation of power systems when conducting ultrasonic guided wave detection on composite insulators.First, finite element simulation of no defect insulators, central section defect insulators and central pore defect insulators is carried out. Then,ICEEMDAN is used to decompose ultrasonic echo data of all the detect types of insulators. Third, sample entropies and permutation entropies of all the modes are calculated and SVM is employed to identify the defect types of composite insulators. According to the results, the signal recognition method based on ICEEMDAN and SVM can extract the fault characteristics of composite insulators and can identify and classify these defects well.
    Key words: composite insulator; ultrasonic guided wave; defect identification; improved complete ensemble empirical mode decomposition with adaptive noise; support vector machine
 
参考文献
[1] 张鸣,陈勉.500 kV 罗北甲线合成绝缘子芯棒脆断原因分析[J]. 电网技术,2003,27(12) :51-53.
[2] 卢明,张中浩,李黎,等. 复合绝缘子酥朽发热老化的原因分析[J] . 电网技术,2018,42(4) :1335-1341.
[3] 王浩然,郭子豪,张丝钰,等. 缺陷对特高压交流盆式绝缘子电场分布的影响[J] . 高电压技术,2018,44(3) :982-992.
[4] 律方成,牛雷雷,王胜辉,等. 基于紫外成像和改进 YOLOv3 的瓷悬式绝缘子放电严重程度评估[J].高电压技术,2021,47(2) :377-386.
[5] 商俊平,李储欣,陈亮. 基于视觉的绝缘子定位与自爆缺陷检测[J] . 电子测量与仪器学报,2017,31(6) :844-849.
[6] 李良. 复合绝缘子超声波探伤信号处理方法研究[D].长沙:长沙理工大学,2019.
[7] 邓红雷,鲁强,陈力,等. 基于超声导波的复合绝缘子检测[J]. 高电压技术,2016,42(4) :1236-1244.
[8] 邓红雷, 陈力, 鲁强, 等. 超声导波检测绝缘子用玻璃钢芯棒缺陷[J] . 电工技术学报,2017,32(12) :268-276.
[9] 鲁强.基于超声导波的复合绝缘子检测技术的研究[D].广州:华南理工大学,2016.
[10] 陈力. 超声导波在复合绝缘子中的传播特性研究[D].广州:华南理工大学,2017.
[11] 何战峰. 基于超声导波的复合绝缘子芯棒和脱粘缺陷检测研究[D]. 广州:华南理工大学,2018.
[12] 邓红雷,何战峰,陈力. 复合绝缘子脱粘缺陷的超声导波检测[J] . 高电压技术,2019,45(1) :196-202.
[13] 邓红雷,何战峰,陈力,等. 基于匹配追踪的 L 模态超声导波检测复合绝缘子芯棒缺陷研究[J] . 电瓷避雷器,2019(2) :168-174.
[14] 张樯,周西峰,王瑾,等. 基于改进的 EMD 超声信号降噪方法研究[J] . 南京邮电大学学报(自然科学版),2016,36(2) :49-55.
[15] 左宪章,康健,师小红,等. 基于小波包最优基子带能量的裂纹特征提取[J] . 机械强度,2010,32(2) :212-217.
[16] LEE K, ESTIVILL-CASTRO V.Feature extraction and gating techniques for ultrasonic shaft signal classification[J] . Applied Soft Computing Journal,2007,7(1) :156-165.
[17] DE FENZA A , SORRENTINO A , VITIELLO P .Application of Artificial Neural Networks and Probability Ellipse Methods for Damage Detection Using Lamb Waves[J].Composite Structures,2015,133 :390-403.
[18] DOBSON J, CAWLEY P.Independent Component Analysis for Improved Defect Detection in Guided Wave Monitoring[J].Proceedings of the IEEE,2016,104(8) :1620-1631.
[19] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J].Biomedical Signal Processing and Control,2014,14(1) :19-29.
[20] RICHMAN J, MOORMAN J R.Physiological timeseries analysis using approximate entropy and sample entropy[J].American Journal of Physiology Heart and Circulatory Physiology,2000,278(6) :2039-2049.
[21] 陈英强,陈煜敏,蒋劲,等. 基于小波包样本熵和 SVM 的水泵机组振动故障诊断[J]. 中国农村水利水电,2017(3):165-168.
[22] BANDT C , POMPE B . Permutation entropy:A natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102.
[23] 王志斌,曹红伟,刘佳佳. 基于小波包去噪与 EMD 的故障电弧检测算法研究[J] . 电测与仪表,2019,56(6):117-121.
[24] 刘伟,韩彦华,王荆,等. 基于粒子群算法优化支持向量机的变压器绕组变形分类方法[J] . 高压电器,2020,56(3):72-78.
[25] 邵鑫明,万书亭,刘荣海,等. 基于 LMD-PCA 和样本熵的瓷支柱绝缘子故障诊断[J] . 无损检测,2021,43(3):69-73.