参考文献
[1] DUAN Lian , HU Jun , ZHAO Gen , et al .Identification of partial discharge defects based on deep learning method[J].IEEE Transactions on Power Delivery,2019,34(4) :1557-1568.
[2] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J] . 高电压技术,2017,43(7) :2263-2277.
[3] 邓兴宇. 高压开关柜局部放电检测中的抗干扰技术研究[D]. 广州:广东工业大学,2021.
[4] 陶加贵. 组合电器局部放电多信息融合辨识与危害性评估研究[D]. 重庆:重庆大学,2013.
[5] 范路,陆云才,陶风波,等. 人工智能在局部放电检测中的应用(二) :模式识别与状态评估[J]. 绝缘材料,2021,54(7) :10-24.
[6] 黄亮,唐炬,凌超,等. 基于多特征信息融合技术的局部放电模式识别研究[J] . 高电压技术,2015,41(3) :947-955.
[7] 陈敬德,李峰,孙源文,等. 基于 KNN 和 MSR 的局部放电模式识别研究[J] . 电气技术,2018,19(1) :10-14.
[8] 周文潮,周子涵,靳冲. 基于 SVM 的变压器局部放电故障诊断研究[J] . 铁路通信信号工程技术,2022,19(S1) :137-140.
[9] FENG X Y, HU X L, YONG J, et al.Application of Improved BPNN Algorithm in GIS Insulation Defect Type Identification[C]//Journal of Physics Conference Series,2019.
[10] 陈继明,许辰航,李鹏,等. 基于时频分析与分形理论的 GIS 局部放电模式识别特征提取方法[J] .高电压技术,2021,47(1) :287-295.
[11] SUN Shengya, SUN Yuanyuan, XU Gongde, et al.Partial Discharge Pattern Recognition of Transformers Based on the Gray-Level Co-Occurrence Matrix of Optimal Parameters[J].IEEE Access,2021,9 :102422-102432.
[12] FIRUZI K, VAKILIAN M, PHUNG B T, et al.Partial discharges pattern recognition of transformer defect model by LBP & HOG features[J].IEEE Transactions on Power Delivery,2019,34(2) :542-550.
[13] BARRIOS S, BULDAIN D, COMECH M P, et al.Partial discharge classification using deep learning methods—Survey of recent progress[J].Energies,2019,12(13) :2485.
[14] 黄雪莜,熊俊,张宇,等. 基于残差卷积神经网络的开关柜局部放电模式识别[J] . 中国电力,2021,54(2) :44-51.
[15] 陈健宁,周远翔,白正,等. 基于多通道卷积神经网络的油纸绝缘局部放电模式识别方法[J] . 高电压技术,2022,48(5) :1705-1715.
[16] 孙抗,轩旭阳,刘鹏辉,等. 小样本下基于 CNN-DCGAN 的电缆局部放电模式识别方法[J] . 电子科技,2022,35(7) :7-13.
[17] TANG Zhiguo , CAO Zhi . Application of Convolutional Neural Network Transfer Learning in Partial Discharge Pattern Recognition[C]//2020 IEEE International Conference on High Voltage Engineering and Application(ICHVE),2020.
[18] GAO Angran, ZHU Yongli, CAI Weihao, et al.Pattern recognition of partial discharge based on VMD-CWD spectrum and optimized CNN with cross-layer feature fusion[J].IEEE Access,2020,8 :151296-151306.
[19] 朱霄珣,林佳伟,刘宝平,等. 基于 Iradon-CNN 的变压器局部放电状态识别方法[J] . 电子测量技术,2022,45(17) :36-42.
[20] 谢荣斌,杨超,申强,等. TEV 与 HFCT 法测量开关柜局部放电的特性对比[J] . 中国电力,2022,55(3) :37-47.
[21] 吴闽,蒋伟,罗颖婷,等. 基于改进 SSD 的 GIS 多源局放模式识别[J] . 高电压技术,2023,49(2) :812-821.
[22] MANTACH S, ASHRAF A, JANANI H, et al.A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set[J].Energies,2021,14(5) :1355.
[23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.