Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于BP神经网络的低压变频器电压暂降耐受能力评估

来源:电工电气发布时间:2023-12-28 12:28 浏览次数:257

基于BP神经网络的低压变频器电压暂降耐受能力评估

郭微,杨家豪
(厦门大学嘉庚学院 机电工程与自动化学院,福建 漳州 363105)
 
    摘 要:针对电压暂降在工程中对变频调速系统有较大影响的问题,利用 BP 神经网络对低压变频器遭受电压暂降后的直流侧电压进行预测,建立负载功率、直流侧电容、暂降深度、持续时间 4 个参数与变频器直流侧电压的非线性映射关系。基于 MATLAB/Simulink 软件建立仿真模型,调节 4 个参数进行批量化仿真,针对不同电压暂降类型获得充足的数据样本,建立 BP 神经网络进行预测,通过将直流侧电压预测值与保护定值作比较,评估低压变频器的电压暂降耐受能力。算例结果表明,BP 神经网络模型预测精度较高,能够准确预测直流侧电压值,从而判断低压变频器遭受电压暂降后的保护动作情况。
    关键词: 电压暂降;BP 神经网络;低压变频器;耐受能力
    中图分类号:TM714 ;TN773     文献标识码:A     文章编号:1007-3175(2023)12-0049-05
 
Assessment of Voltagesag Tolerance of Low-Voltage Convertor
Based on BP Neural Network
 
GUO Wei, YANG Jia-hao
(School of Mechanical and Electrical Engineering & Automation, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)
 
    Abstract: In view of the problem that voltagesag has a great impact on the frequency conversion speed regulation system in engineering,the BP neural network is used to predict the DC side voltage after voltagesag of low-voltage convertor, and the nonlinear mapping relationship of load power, DC side capacitor, depth of voltage dip, duration and the DC side voltage of the convertor is established. First, the simulation model was built based on MATLAB/Simulink, four parameters were adjusted for mass simulation, sufficient data samples were obtained for different types of voltagesag. Then, the BP neural network was established for prediction, the voltagesag tolerance of low-voltage convertor was evaluated by comparing the DC side voltage predicted and protecteed value. The results show that the BP neural network model has high prediction accuracy and can accurately predict the DC side voltage value, so as to judge the protection action of low-voltage convertor after voltage sag.
    Key words: voltagesag; BP neural network; low-voltage convertor; tolerance
 
参考文献
[1] 莫文雄,许中,马智远,等. 变频调速系统的电压暂降免疫度计算及关键参数设计[J] . 电力系统自动化,2018,42(18) :157-161.
[2] 蒋素琼. 一种用于检测电压暂降的新方法[J] . 电气技术,2016,17(11) :56-61.
[3] 李晨懿,汪坤,卢文清,等. 变频器对不同类型电压暂降的耐受特性研究[J] . 电测与仪表,2018,55(15) :1-7.
[4] 陶顺,唐松浩,陈聪,等. 变频调速器电压暂降耐受特性试验及量化方法研究Ⅰ :机理分析与试验方法[J]. 电工技术学报,2019,34(6) :1273-1281.
[5] 徐永海,李晨懿,汪坤,等. 低压变频器对电网电压暂降耐受特性及兼容性研究[J] . 电工技术学报,2019,34(10) :2216-2229.
[6] 龚博,赵建阳,刘会巧. 基于静止无功发生器分相控制的电压暂降治理技术[J] . 电气技术,2020,21(9) :33-38.
[7] IEEE Industry Applications Society.Trial-Use Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1 000 V :IEEE Std 1668—2014[S].New York :IEEE Industry Applications Society,2014 :15-16.
[8] 张志勇,张猛,陆金桂. 基于改进 BP 神经网络的液压支架前连杆疲劳寿命预测[J] . 煤矿机械,2023,44(2) :177-179.
[9] 周凯,郭倩雯,栾乐,等. 可调速驱动设备暂态电压扰动耐受能力快速评估方法[J] . 中国测试,2020,46(7) :75-82.
[10] 肖锋.BP 神经网络在步进电机细分控制的应用[J].电气技术,2015,16(10) :120-122.
[11] 王飞,郑张丽,郭静静,等. 基于神经网络的公路工程造价预测模型[J] . 河北工程大学学报(自然科学版),2014,31(4) :102-104.
[12] 陈明.MATLAB 神经网络原理与实例精解[M]. 北京:清华大学出版社,2013.