(School of Mechanical and Electrical Engineering & Automation, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China)
Abstract: In view of the problem that voltagesag has a great impact on the frequency conversion speed regulation system in engineering,the BP neural network is used to predict the DC side voltage after voltagesag of low-voltage convertor, and the nonlinear mapping relationship of load power, DC side capacitor, depth of voltage dip, duration and the DC side voltage of the convertor is established. First, the simulation model was built based on MATLAB/Simulink, four parameters were adjusted for mass simulation, sufficient data samples were obtained for different types of voltagesag. Then, the BP neural network was established for prediction, the voltagesag tolerance of low-voltage convertor was evaluated by comparing the DC side voltage predicted and protecteed value. The results show that the BP neural network model has high prediction accuracy and can accurately predict the DC side voltage value, so as to judge the protection action of low-voltage convertor after voltage sag.
Key words: voltagesag; BP neural network; low-voltage convertor; tolerance
参考文献
[1] 莫文雄,许中,马智远,等. 变频调速系统的电压暂降免疫度计算及关键参数设计[J] . 电力系统自动化,2018,42(18) :157-161.
[2] 蒋素琼. 一种用于检测电压暂降的新方法[J] . 电气技术,2016,17(11) :56-61.
[3] 李晨懿,汪坤,卢文清,等. 变频器对不同类型电压暂降的耐受特性研究[J] . 电测与仪表,2018,55(15) :1-7.
[4] 陶顺,唐松浩,陈聪,等. 变频调速器电压暂降耐受特性试验及量化方法研究Ⅰ :机理分析与试验方法[J]. 电工技术学报,2019,34(6) :1273-1281.
[5] 徐永海,李晨懿,汪坤,等. 低压变频器对电网电压暂降耐受特性及兼容性研究[J] . 电工技术学报,2019,34(10) :2216-2229.
[6] 龚博,赵建阳,刘会巧. 基于静止无功发生器分相控制的电压暂降治理技术[J] . 电气技术,2020,21(9) :33-38.
[7] IEEE Industry Applications Society.Trial-Use Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1 000 V :IEEE Std 1668—2014[S].New York :IEEE Industry Applications Society,2014 :15-16.
[8] 张志勇,张猛,陆金桂. 基于改进 BP 神经网络的液压支架前连杆疲劳寿命预测[J] . 煤矿机械,2023,44(2) :177-179.
[9] 周凯,郭倩雯,栾乐,等. 可调速驱动设备暂态电压扰动耐受能力快速评估方法[J] . 中国测试,2020,46(7) :75-82.
[10] 肖锋.BP 神经网络在步进电机细分控制的应用[J].电气技术,2015,16(10) :120-122.
[11] 王飞,郑张丽,郭静静,等. 基于神经网络的公路工程造价预测模型[J] . 河北工程大学学报(自然科学版),2014,31(4) :102-104.
[12] 陈明.MATLAB 神经网络原理与实例精解[M]. 北京:清华大学出版社,2013.