Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于sViT的风电场集电线故障区段定位

来源:电工电气发布时间:2023-12-28 13:28 浏览次数:198

基于sViT的风电场集电线故障区段定位

刘富州,袁博文,吕桐,卢炳文,周杰,吴大明
(国网江苏省电力有限公司盐城供电分公司,江苏 盐城 224000)
 
    摘 要:为解决风电场集电线单相接地故障后定位困难的问题,提出基于变分模态-小波变换 (VMD-CWT) 时频谱联合孪生视觉自注意力模型 (sViT) 的故障区段定位方法。分析发现故障区段与集电线故障电压的 VMD-CWT 谱有密切关系,借助深度学习算法挖掘谱线与故障区段的关系可以实现集电线故障区段定位。借助 PSCAD/EMTDC 软件搭建集电线模型,收集各类故障情况的数据后进行 VMD-CWT 变换生成时频谱;在训练集上搜索 sViT 网络的最优识别参数,将这一网络的分支用于测试集识别。仿真结果表明该方法对集电线多分支、混合短线有着良好的适应能力,定位受到过渡电阻、噪音和故障相位角的影响较小。
    关键词: sViT 网络;变分模态- 小波变换;风电场集电线;故障区段定位
    中图分类号:TM614 ;TM726     文献标识码:A     文章编号:1007-3175(2023)12-0029-08
 
Fault Section Location of Wind Farm Collector Line Based on sViT
 
LIU Fu-zhou, YUAN Bo-wen, LYU Tong, LU Bing-wen, ZHOU Jie, WU Da-ming
(State Grid Jiangsu Electric Power Co., Ltd. Yancheng Power Supply Branch, Yancheng 224000, China)
 
    Abstract: In order to solve the problem of difficult location after a single-phase grounding fault in the wind farm collector line, a fault section location method based on the Variational Mode Decomposition-Continuous Wavelet Transform (VMD-CWT) time frequency spectrum combined with siamese Vision Transformer (sViT) is proposed. It is found that the fault section is closely related to the VMD-CWT spectrum of the fault voltage of the collector, the fault section location of the collector line can be realized by mining the relationship between the spectral line and the fault section by using the deep learning algorithm. With the help of PSCAD/EMTDC software to build the collector line model, collect the data of various fault conditions, and generate the time frequency spectrum of VMD-CWT transformation; the optimal recognition parameters of the sViT network will be found on the training set, and the branch of this network will be used for test set recognition.The simulation shows that the method has good adaptability to multi-branch collector lines and mixed short lines, and the positioning is less affected by transition resistance, noise and fault phase angle.
    Key words: siamese vision transformer network; variational mode decomposition-continuous wavelet transform; wind farm collector line;fault section location
 
参考文献
[1] 孙华东,许涛,郭强,等. 英国“8·9”大停电事故分析及对中国电网的启示[J] . 中国电机工程学报,2019,39(21) :6183-6191.
[2] 齐郑,黄朝晖,陈艳波. 基于零序分量的阻抗法配电网故障定位技术[J] . 电力系统保护与控制,2023,51(6) :54-62.
[3] 王玲,邓志,马明,等. 基于改进视在阻抗的配电网故障定位方法及其应用[J] . 广东电力,2020,33(10) :84-93.
[4] 邓丰,李欣然,曾祥君,等. 基于多端故障行波时差的含分布式电源配电网故障定位新方法[J] . 中国电机工程学报,2018,38(15) :11-22.
[5] 王炜,王全金,尹力,等. 基于零模行波波速量化的高压输电线路双端故障定位方法[J] . 电力自动化设备,2022,42(12) :165-170.
[6] 陶彩霞,杜雪,高锋阳,等. 基于经验小波变换的混合输电线路单相接地故障测距[J] . 电力系统保护与控制,2021,49(10) :105-112.
[7] 夏翊翔,李泽文,雷柳,等. 基于动态虚拟故障的行波网络定位新方法[J] . 中国电机工程学报,2021,41(14) :4868-4878.
[8] 杨红,尹项根,陈卫,等. 基于分相电流突变量相位比较的广域继电保护[J] . 电力系统保护与控制,2012,40(23) :1-6.
[9] 薛永端,徐丙垠,李天友,等. 配网自动化系统小电流接地故障暂态定位技术[J] . 电力自动化设备,2013,33(12) :27-32.
[10] 张鑫,牟龙华. 基于故障暂态电流主频分量的矿山电网暂态保护[J] . 电力自动化设备,2013,33(7) :75-80.
[11] 朱永利,丁嘉,潘新朋. 基于零序分量的风电场集电线不对称接地故障定位[J] . 电力系统保护与控制,2023,51(3) :56-67.
[12] 彭华,朱永利. 基于 apFFT 频谱校正和 XGBoost 的风电场集电线路单相接地故障测距[J] . 电工技术学报,2020,35(23) :4931-4939.
[13] 李永丽,辛双乔,李涛,等. 基于多端信息的风电场集电线路单相接地故障定位算法[J] . 电力工程技术,2022,41(5) :2-11.
[14] MIRZAEI M, VAHIDI B, HOSSEINIAN S H.Accurate fault location and faulted section determination based on deep learning for a parallelcompensated three-terminal transmission line[J].IET Generation, Transmission & Distribution,2019,13(13) :2770-2778.
[15] 侯思祖,郭威,王子奇,等. 基于小波 AlexNet 网络的配电网故障区段定位方法[J] . 电测与仪表,2022,59(3) :46-57.
[16] 张翼,刘富州,朱永利,等. 广域行波信息与图注意力网络相结合的输电网故障定位[J] . 仪器仪表学报,2022,43(6) :140-150.
[17] LUO Guomin, YAO Changyuan, LIU Yinglin, et al.Stacked auto-encoder based fault location in VSC-HVDC[J].IEEE Access,2018,6 :33216-33224.
[18] 中国电力企业联合会. 风力发电场设计规范:GB 51096—2015[S]. 北京:中国计划出版社,2015 :32-36.
[19] 国家电力监管委员会. 风电场接入电力系统技术规定:GB/T 19963—2011[S]. 北京:中国计划出版社,2011 :1-8.
[20] 田永林,王雨桐,王建功,等. 视觉 Transformer 研究的关键问题:现状及展望[J] . 自动化学报,2022,48(4) :957-979.
[21] LAN S, CHEN M J, CHEN D Y.A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network[J].IEEE Transactions on Power Delivery,2019,34(3) :848-857.