Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

非匀称载荷叠加态的组合变油箱加强筋降本优化研究

来源:电工电气发布时间:2024-01-31 15:31 浏览次数:516

非匀称载荷叠加态的组合变油箱加强筋降本优化研究

苏中信
(正泰电气股份有限公司技术研究院, 上海 201614)
 
    摘 要:如何使组合变油箱既满足安全可靠的前提条件,又充分提高钢材等原材料的利用率,节约成本,在现如今尤为关键。基于组合变油箱在非匀称载荷条件的实际工况下,采用两种不同模式的力学叠加态计算方法,对组合变油箱加强筋的布局方式和材料用量进行了优化,在满足极限工况产品安全的条件下,最大限度地达成了降低钢材使用量这一目的。经有限元仿真分析及实物样机试制,验证了该研究的可靠性和有效性。
    关键词: 组合变油箱;加强筋;叠加态力学;迭代计算;结构仿真
    中图分类号:TM401+.1     文献标识码:A     文章编号:1007-3175(2024)01-0059-06
 
Research on Cost Reduction of Stiffener of Combined Variable Oil Tanks
Under the Non-Uniform Load Superposition State
 
SU Zhong-xin
(Technical Research Institute of Chint Electric Co., Ltd, Shanghai 201614, China)
 
    Abstract: How to make the combined variable oil tank meet the preconditions of safety and reliability and to fully improve the utilization rate of raw materials such as steel is becoming particularly critical. Based on the actual working operation of the combined variable oil tanks under the non-uniform load conditions, the paper adopts two different modes of mechanical superposition calculation methods to optimize the layout of stiffener and material consumption of the combined variable oil tanks. Then, the goal of reducing the steel consumption is achieved to the greatest extent under the extreme working condition of product safety. The reliability and effectiveness of the study is verified by finite element simulation analysis and physical prototype trial production.
    Key words: combined variable oil tank; stiffener; superposition state mechanics; iterative calculation; structural simulation
 
参考文献
[1] International Renewable Energy Agency .World Energy Transitions Outlook 2023:1.5℃ Pathway[EB/OL].(2023-06-22)[2023-09-15].https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023.
[2] International Renewable Energy Agency.Renewable Power Generation Costs in 2022[EB/OL].(2023-08-02) [2023-09-15] . https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022.
[3] British Petroleum.Statistical review of world energy[EB/OL].(2022-07-16)[2023-09-15].https://www.bp.com/content/dam//bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-fullreport.pdf.
[4] 邱辰. 新形势下新能源发电经济性影响因素分析[J] .水力发电,2023,49(2) :96-99.
[5] 王青,江华,李嘉彤,等. 中国及全球光伏产业发展形势分析[J]. 太阳能,2022(11) :5-10.
[6] 张柏林, 雷绅, 吴锋, 等. 面向新能源电力系统的容量市场出清模型[J] . 电工电能新技术,2022,41(12) :1-8.
[7] 王恒,陈涌强,何非. 几起美式箱变火灾事故原因分析[J]. 湖北电力,2011,35(1) :33-35.
[8] 李德阁,冯英,王承玉,等. 国内 10 kV 在运美式箱变现状调研、技术分析及发展对策[J] . 高压电器,2023,59(1) :161-168.
[9] 吴涛. 风电场美式箱变监控和保护设计研究[J]. 高压电器,2018,54(1) :152-157.
[10] 陈春红,闫凯,陈永亮. 一种新型中压箱式变电站的探讨[J]. 高压电器,2013,49(5) :124-127.
[11] 张建忠,程明,潘苏平. 紧凑型箱式变电站及其智能化的实现[J]. 高压电器,2004,40(5) :349-351.
[12] 范杰. 浅议美式箱式变电站在配电网中的应用[J]. 青海电力,2006,25(2) :28-31.
[13] 冯力. 美式箱变的发展及改进[J] . 西北电力技术,2003,31(4) :35-36.
[14] 吴鸿雁,沙维华,许镐娥. 新型预装式变电站[J]. 高压电器,2000,36(5) :57-58.
[15] 中国电器工业协会. 电力变压器 第 1 部分:总则:GB 1094.1—2013[S]. 北京:中国标准出版社,2013:35.
[16] 李素雅,崔继泽,王奎生,等. 变压器箱体耐压强度简化计算[J]. 电气制造,2010(12) :44-45.
[17] 王新兵,赵永志,胥建文,等. 变压器油箱规则结构计算分析[J]. 山东电力技术,2017,44(12) :50-55.
[18] 刘小鹏,李小蓉,宁朝辉,等. 电力变压器油箱强度分析与仿真研究[J]. 电工技术,2019(12) :27-28.
[19] 中国电器工业协会. 光伏发电用组合式变压器:T/CEEIA 251—2016[S].北京:科学技术文献出版社,2016:9.