Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

远海岸海上风电输电方式技术经济分析

来源:电工电气发布时间:2024-02-01 13:01 浏览次数:624

远海岸海上风电输电方式技术经济分析

吴倩1,薄鑫1,吴杨勇2,郑宇超1
(1 国网江苏省电力有限公司经济技术研究院,江苏 南京 210008;
2 国网安徽省电力有限公司祁门县供电公司,安徽 祁门 245600)
 
    摘 要:全球海上风电呈现远海化、规模化、集群化趋势,远海风电输电方式选择至关重要。考虑海上风电场规模、离岸距离等因素,采用等年值法,结合 14 种远海风电典型场景,从技术性、经济性两个维度,对高压工频交流、柔性直流、低频交流等 3 种海上风电输电方式进行对比分析。研究表明,工频交流输电技术在中小容量、中远距离海上风电送出应用场景具有技术、经济优势,柔性直流输电技术应用于大容量、远距离海上风电送出场景时经济优势凸显。同时,对 35、66 kV 交流汇集-柔直送出两种方案进行比较,指出 66 kV 汇集无海上升压站- 柔直方案更具经济性,进一步缩短了交直流输电方式等价离,并给出典型场景海上风电输电方式选择建议,提出了远海岸海上风电送出方式选择指导意见。
    关键词: 远海岸;海上风电;高压工频交流;柔性直流;低频交流;输电方式;技术经济分析
    中图分类号:TM614 ;TM722     文献标识码:A     文章编号:1007-3175(2024)01-0001-09
 
Techno-Economic Analysis of Far Coast Offshore
Wind Power Transmission Modes
 
WU Qian1, BO Xin1, WU Yang-yong2, ZHENG Yu-chao1
(1 State Grid Jiangsu Electric Power Co., Ltd. Economic Research Institute, Nanjing 210008, China;
2 State Grid Anhui Electric Power Co., Ltd. Qimen County Electric Power Supply Company, Qimen 245600, China)
 
    Abstract: The global offshore wind power shows the trend of far coast, large-scale and cluster, and the choice of offshore wind power transmission mode is very important. Considering the factors such as the scale of offshore wind farms and the offshore distance, this paper adopts the equal annual value method and combines 14 typical scenarios of offshore wind power. From the two dimensions of technology and economy, makes a comparative analysis of three types of offshore wind power transmission methods, including high-voltage power frequency AC, flexible DC and low-frequency AC. The results show that the power frequency AC transmission technology has technical and economic advantages in the application scenarios of small and medium-capacity, medium- and long-distance offshore wind power transmission, and the economic advantages of flexible DC transmission technology are prominent when applied to large-capacity and long-distance offshore wind power transmission scenarios. At the same time, the comparison of the 35 and 66 kV AC convergence-flexible direct transmission schemes is carried out, and it is pointed out that the 66 kV convergence without oversea booster station-flexible direct transmission scheme is more economical, which further shortens the equivalent distance of AC and DC transmission modes.Then, suggestions on the selection of offshore wind power transmission methods in typical scenarios are given, and guidance on the selection of offshore wind power transmission methods in far coast is proposed.
    Key words: far coast; offshore wind power; high-voltage power frequency AC; flexible DC; low frequency AC; transmission mode; techno-economic analysis
 
参考文献
[1] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J] . 中国工程科学,2021,23(1) :149-159.
[2] 时智勇,王彩霞,李琼慧.“十四五”中国海上风电发展关键问题[J]. 中国电力,2020,53(7) :8-17.
[3] Global Wind Energy Council.Global Offshore Wind Report 2023[R].Brussels :Belgium,2023.
[4] 徐政. 海上风电送出主要方案及其关键技术问题[J] .电力系统自动化,2022,46(21) :1-9.
[5] 蔡旭,杨仁炘,周剑桥,等. 海上风电直流送出与并网技术综述[J] . 电力系统自动化,2021,45(21) :2-22.
[6] 李岩,冯俊杰,卢毓欣,等. 大容量远海风电柔性直流送出关键技术与展望[J] . 高电压技术,2022,48(9) :3384-3393.
[7] 王鑫,王海云,王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表,2020,57(22) :55-62.
[8] 黄晓尧,谢瑞,裘鹏,等.远海风电两种送出方案的经济性评估[J].浙江电力,2022,41(7) :1-7.
[9] 黄明煌,王秀丽,刘沈全,等. 分频输电应用于深远海风电并网的技术经济性分析[J] . 电力系统自动化,2019,43(5) :167-174.
[10] 刘景晖,万振东,李飞科. 大规模海上风电场集群交直流输电方式的等价距离研究[J] . 电力勘测设计,2020(4) :1-5.
[11] 王秀丽,赵勃扬,郑伊俊,等. 海上风力发电及送出技术与就地制氢的发展概述[J] . 浙江电力,2021,40(10) :3-12.
[12] 刘卫东,李奇南,王轩,等. 大规模海上风电柔性直流输电技术应用现状和展望[J] . 中国电力,2020,53(7) :55-71.
[13] 迟永宁,梁伟,张占奎,等. 大规模海上风电输电与并网关键技术研究综述[J] . 中国电机工程学报,2016,36(14) :3758-3771.
[14] 杨大业,项祖涛,罗煦之,等. 永磁型风机海上风电送出系统甩负荷故障暂时过电压影响因素分析[J]. 发电技术,2022,43(1) :111-118.
[15] 吴倩,韩笑,叶昊亮,等. 海上风电场经 220 kV 交流海缆送出系统的无功配置方案[J]. 电力电容器与无功补偿,2021,42(4) :22-30.
[16] YANG Bo, LIU Bingqiang, ZHOU Hongyu, et al.A critical survey of technologies of large offshore wind farm integration:summary ,advances, and perspectives[J].Protection andControl of Modern Power Systems,2022,7(1) :2-17.
[17] WU Sihang, QI Lei, JIA Wenxuan, et al.A Modular Multilevel Converter with Integrated Energy Dissipation Equipment for Offshore Wind VSCHVDC System[J].IEEE Transactions on Sustainable Energy,2021,13(1),353-362.
[18] LIU J , DONG D , ZHANG D . A hybrid modular multilevel converter family with higher power density and efficiency[J].IEEE Transactions on Power Electronics,2021,36(8) :9001-9014.
[19] 孟沛彧,向往,邸世民,等. 大规模海上风电多电压等级混合级联直流送出系统[J] . 电力系统自动化,2021,45(21) :120-128.
[20] 李彬彬,王宁,赵晓东,等. 适用于全直流海上风电场的柔性换流高压大容量直流变压器[J]. 电力系统自动化,2022,46(22) :129-141.
[21] 文卫兵,赵峥,李明,等. 海上风电柔性直流系统设计及工程应用[J] . 全球能源互联网,2023,6(1) :1-9.
[22] 薄鑫,杨志超,宋杉,等. 海上风电经柔直送出系统受端交流故障联合穿越控制策略[J] . 可再生能源,2022,40(10) :1396-1406.
[23] 王锡凡,刘沈全,宋卓彦,等. 分频海上风电系统的技术经济分析[J] . 电力系统自动化,2015,39(3) :43-50.
[24] 唐英杰,张哲任,徐政. 基于有源型 M3C 矩阵变换器的海上风电低频送出方案[J] . 电力系统自动化,2022,46(8) :113-122.
[25] 赵国亮,陈维江,邓占锋,等. 柔性低频交流输电关键技术及应用[J] . 电力系统自动化,2022,46(15) :1-10.
[26] 林进钿,倪晓军,裘鹏. 柔性低频交流输电技术研究综述[J]. 浙江电力,2021,40(10) :42-50.
[27] 罗魁, 郭剑波, 马士聪, 等. 海上风电并网可靠性分析及提升关键技术综述[J] . 电网技术,2022,46(10) :3691-3702.
[28] 王邦彦,王秀丽,王碧阳,等. 海上风电分频送出系统可靠性评估模型及方法[J] . 电网技术,2022,46(8) :2899-2908.
[29] 宋冬然,梁梓昂,夏鄂,等. 风电全生命周期成本建模与经济分析综述[J] . 热力发电,2023,52(3) :1-12.
[30] 吕杰,杨维稼,黄玮,等.66 kV 交流接入海上换流站方案的技术经济性[J]. 中国电力,2020,53(7) :72-79.
[31] 曹善军,王金雷,吴小钊,等. 海上风电送出技术研究浅述[J]. 电工电气,2020(9) :66-69.
[32] 苏匀,马小婷,李少华,等. 海上风电送出交流故障穿越控制策略研究[J]. 电工电气,2021(4) :11-16.