Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

氢电混输直流超导电缆研究进展及安全设计研究

来源:电工电气发布时间:2024-04-07 14:07 浏览次数:453

氢电混输直流超导电缆研究进展及安全设计研究

朱红亮
(富通集团(天津)超导技术应用有限公司 天津市超导电缆应用重点实验室,天津 300384)
 
    摘 要:超导氢电混合旨在实现液氢清洁能源和超导电力能源共同输运,不仅可以节约冷却成本,同时可以提升超导电缆通流能力,是实现超导电力大规模应用的有效技术手段。阐述了氢电混输直流超导电缆研究进展,对超导电缆在液氢环境下的混输结构设计方法进行了研究,并给出了安全设计原则与应急预案,为氢电混输直流超导电缆优化设计提供了参考。
    关键词: 直流超导电缆;氢电混输;热绝缘;冷绝缘
    中图分类号:TM757     文献标识码:A     文章编号:1007-3175(2024)03-0001-05
 
Research Progress and Safety Design of Hydrogen-Electric
Hybrid Transmission DC Superconducting Cables
 
ZHU Hong-liang
(Futong Group (Tianjin) Superconductor Technologies and Applications Co., Ltd. Tianjin Key
Laboratory of Superconducting Cable Applications, Tianjin 300384, China)
 
    Abstract: Superconducting hydrogen-electric hybrid aims to realize the joint transportation of liquid hydrogen clean energy and superconducting power energy, which can not only save cooling costs, but also improve the flow capacity of superconducting cables, and it is an effective technical means to realize the large-scale application of superconducting electricity. In this paper, the research progress of hydrogen-electric hybrid DC superconducting cable is expounded, the design method of superconducting cable mixed transportation structure in liquid hydrogen environment is studied, and the safety design principles and emergency plan are given, which provides a reference for the optimal design of hydrogen-electric hybrid DC superconducting cable.
    Key words: DC superconducting cable; hydrogen-electric hybrid transmission; thermal insulation; cold insulation
 
参考文献
[1] 郭伟,唐人虎.2060 碳中和目标下的电力行业[J] .能源,2020(11) :19-26.
[2] 黄晶.中国 2060 年实现碳中和目标亟需强化科技支撑[J].可持续发展经济导刊,2020(10) :15-16.
[3] 张平祥,闫果,冯建情,等. 强电用超导材料的发展现状与展望[J]. 中国工程科学,2023,25(1) :60-67.
[4] 严陆光,周孝信,甘子钊,等. 关于发展高温超导输电的建议[J]. 电工文摘,2015(1) :1-8.
[5] 肖立业,林良真. 超导输电技术发展现状与趋势[J] .电工技术学报,2015,30(7) :1-9.
[6] 朱红亮,曹雨军,夏芳敏,等. 高温超导电缆制冷系统设计控制方案及试验验证[J] . 真空与低温,2021,27(6) :543-548.
[7] 李继春,张立永,曹雨军,等. 冷绝缘高温超导电缆循环冷却系统设计及运行分析[J] . 低温与超导,2020,48(2) :7-11.
[8] 杨天慧,信赢,李文鑫. 满足电力与能源液体双重输送管道建设的超导材料需求和发展现状[J]. 中国电机工程学报,2022,42(z1) :215-225.
[9] ISHIGOHKA T.A feasibility study on a world-wide-scale superconducting power transmission system [J].IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee,1995,5(2) :949-952.
[10] GRANT P M.The supercable: Dual delivery of chemical and electric power[J].IEEE Transactions on Appiled Superconductivity,2005,15(2) :1810-1813.
[11] TREVISANI L, FABBRI M, NEGRINI F.Long-term scenarios for energy and environment: Energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J].Fuel Processing Technology,2006,87(2) :157-161.
[12] TREVISANI L, FABBRI M, NEGRINI F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J].Cryogenics,2007,47(2) :113-120.
[13] YAMADA S, HISHINUMA Y, UEDE T, et al.Study on 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics:Conference Series,2008,97(1) :012167.
[14] YAMADA S, HISHINUMA Y, UEDE T, et al.Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics: Conference Series,2010,234(3) :032064.
[15] 黄晟,翟雨佳,黄守道,等. 一种海上离网型超导风电制备液氢的方法及装置:C N202210428868.6[P] .2023-07-19.
[16] NAKAYAMA T, YAGAI T, TSUDA M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3) :2062-2065.
[17] VYSOTSKY V S, NOSOVA A, TETISOVS S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—First experimental proof of concept[J].IEEE Transactions on Applied Superconductivity,2013,23(3) :5400906.
[18] VYSOTSKY V S, BLAGOV E V, KOSTYUK V V, et al.New 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable: Development and test results[J].IEEE Transactions on Applied Superconductivity,2015,25(3) :5400205.
[19] KOSTYUK V V, BLAGOV E V, ANTYUKHOV I V, et al.Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable[J].Cryogenics,2015,66 :34-42.
[20] 李振明,崔亚林,刘伟,等. 液氢温区超导电缆本体设计与短样试验[J]. 低温与超导,2018,46(1) :54-58.
[21] TAITO M,YASUYUKI S,MASAHIRO S, et al.Experiment and Simulation for Normal Zone Propagation of Multifilament MgB2 Superconducting Wire Cooled by Liquid Hydrogen[J].IEEE Transactions on Applied Superconductivity,2019,29(5) :1-6.
[22] 金建勋. 高温超导电缆与输电[M]. 北京:科学出版社,2021.
[23] 崔亚林. 液氢环境下超导电缆结构设计与性能分析研究[D]. 北京:北京交通大学,2017.
[24] 陈卓正,李华强,钟力生. 聚丙烯层压纸绝缘电缆发展现状[J]. 绝缘材料,2022,55(11) :1-9.
[25] 赵瑞彬. 高临界电流超导磁体结构优化与安全运行分析[D]. 成都:四川师范大学,2022.