参考文献
[1] 郭伟,唐人虎.2060 碳中和目标下的电力行业[J] .能源,2020(11) :19-26.
[2] 黄晶.中国 2060 年实现碳中和目标亟需强化科技支撑[J].可持续发展经济导刊,2020(10) :15-16.
[3] 张平祥,闫果,冯建情,等. 强电用超导材料的发展现状与展望[J]. 中国工程科学,2023,25(1) :60-67.
[4] 严陆光,周孝信,甘子钊,等. 关于发展高温超导输电的建议[J]. 电工文摘,2015(1) :1-8.
[5] 肖立业,林良真. 超导输电技术发展现状与趋势[J] .电工技术学报,2015,30(7) :1-9.
[6] 朱红亮,曹雨军,夏芳敏,等. 高温超导电缆制冷系统设计控制方案及试验验证[J] . 真空与低温,2021,27(6) :543-548.
[7] 李继春,张立永,曹雨军,等. 冷绝缘高温超导电缆循环冷却系统设计及运行分析[J] . 低温与超导,2020,48(2) :7-11.
[8] 杨天慧,信赢,李文鑫. 满足电力与能源液体双重输送管道建设的超导材料需求和发展现状[J]. 中国电机工程学报,2022,42(z1) :215-225.
[9] ISHIGOHKA T.A feasibility study on a world-wide-scale superconducting power transmission system [J].IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee,1995,5(2) :949-952.
[10] GRANT P M.The supercable: Dual delivery of chemical and electric power[J].IEEE Transactions on Appiled Superconductivity,2005,15(2) :1810-1813.
[11] TREVISANI L, FABBRI M, NEGRINI F.Long-term scenarios for energy and environment: Energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J].Fuel Processing Technology,2006,87(2) :157-161.
[12] TREVISANI L, FABBRI M, NEGRINI F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J].Cryogenics,2007,47(2) :113-120.
[13] YAMADA S, HISHINUMA Y, UEDE T, et al.Study on 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics:Conference Series,2008,97(1) :012167.
[14] YAMADA S, HISHINUMA Y, UEDE T, et al.Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics: Conference Series,2010,234(3) :032064.
[15] 黄晟,翟雨佳,黄守道,等. 一种海上离网型超导风电制备液氢的方法及装置:C N202210428868.6[P] .2023-07-19.
[16] NAKAYAMA T, YAGAI T, TSUDA M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3) :2062-2065.
[17] VYSOTSKY V S, NOSOVA A, TETISOVS S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—First experimental proof of concept[J].IEEE Transactions on Applied Superconductivity,2013,23(3) :5400906.
[18] VYSOTSKY V S, BLAGOV E V, KOSTYUK V V, et al.New 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable: Development and test results[J].IEEE Transactions on Applied Superconductivity,2015,25(3) :5400205.
[19] KOSTYUK V V, BLAGOV E V, ANTYUKHOV I V, et al.Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable[J].Cryogenics,2015,66 :34-42.
[20] 李振明,崔亚林,刘伟,等. 液氢温区超导电缆本体设计与短样试验[J]. 低温与超导,2018,46(1) :54-58.
[21] TAITO M,YASUYUKI S,MASAHIRO S, et al.Experiment and Simulation for Normal Zone Propagation of Multifilament MgB2 Superconducting Wire Cooled by Liquid Hydrogen[J].IEEE Transactions on Applied Superconductivity,2019,29(5) :1-6.
[22] 金建勋. 高温超导电缆与输电[M]. 北京:科学出版社,2021.
[23] 崔亚林. 液氢环境下超导电缆结构设计与性能分析研究[D]. 北京:北京交通大学,2017.
[24] 陈卓正,李华强,钟力生. 聚丙烯层压纸绝缘电缆发展现状[J]. 绝缘材料,2022,55(11) :1-9.
[25] 赵瑞彬. 高临界电流超导磁体结构优化与安全运行分析[D]. 成都:四川师范大学,2022.